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Preface

Mitochondria are fascinating cellular organelles that, even 100 years after their dis-
covery, continue to puzzle researchers and challenge our experimental capabilities. 
Enormous progress in our understanding of these ancient organelles’ function and 
their vital involvement in a plethora of cellular signaling pathways has been made 
in the last 20 years, and yet, there remain old riddles (as well as emerging new ones) 
waiting to be solved. The focus of this book, the molecular basis for mitochondrial 
signaling, treats just one part of the current surge in mitochondrial research but aims 
to inform readers on the vibrancy and versatility of modern mitochondrial research: 
how it actively embraces new disciplines and research areas and how it quickly 
assimilates modern technologies. A wide array of cutting-edge methods is covered 
in this book, ranging from electrophysiology and cell biology to structural and com-
putational biology. It is hoped that readers will find this volume fulfilling and useful 
in their own investigations.

Traditionally, mitochondria were viewed as “the powerhouse of the cell,” using 
oxidative phosphorylation to convert dietary calories into usable energy. While this 
remains true, it is now well recognized that mitochondria are involved in multiple 
crucial cellular functions, including Ca2+ signaling, programmed cell death or apop-
tosis, adaptation to stressful conditions, steroidogenesis, and aging. Mitochondrial 
dysfunction plays a central role in a wide range of age-related disorders, myopa-
thies, neurodegenerations, and various forms of cancer. Mitochondrial channels and 
transporters are directly involved in the regulation of mitochondrial functions and in 
controlling metabolic response to nutritional conditions, energy demands, and 
developmental needs. They compose a molecularly diverse group of channels and 
transporters with the purpose of translocating ions, metabolites, and proteins across 
the two mitochondrial membranes, providing a dynamic exchange of energy and 
matter between mitochondria and the cytosol. The physiological importance of 
mitochondrial channels and transporters includes key roles in the regulation of the 
production of both mitochondrial energy in the form of ATP and toxic reactive oxy-
gen species and in the regulation of cellular Ca2+ levels, apoptosis, and cellular 
metabolism. All these play crucial roles in normal cellular physiology and in patho-
logical conditions.
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Recent advances in the study of mitochondrial channels will be of particular 
interest to readers. After years of failed attempts as well as exciting discoveries, the 
molecular identity of two important channels in the mitochondrial inner membrane 
has finally been established. These are the mitochondrial Ca2+ uniporter (MCU) and 
the mitochondrial permeability transition pore (mPTP). Mitochondria play a pivotal 
role in Ca2+ homeostasis, as they represent a central hub for the complex network of 
Ca2+ signaling pathways and control of Ca2+ dynamics under physiological and 
pathological conditions. Recent progress in the development of fluorescently labeled 
and genetically encoded Ca2+ probes targeted to the mitochondrial matrix allowed 
the dissection of the physiology and molecular identity of the MCU. Furthermore, 
the so-called Ca2+ microdomains found on the surface of mitochondria are function-
ally and structurally coupled with endoplasmic reticular (ER) membranes and Ca2+-
releasing channels. Recent exciting findings confirmed that the c-subunit of the ATP 
synthase, generally required for ATP production, can form a large uncoupling chan-
nel in the mitochondrial inner membrane (mPTP) under certain conditions, such as 
excessive Ca2+ uptake by mitochondria. The persistent opening of the PTP produces 
osmotic dysregulation of the inner membrane and leads to the disruption of ATP 
production and consequently cell death. Another new promising research direction 
arises from recent discoveries that structural changes of mPTP are associated with 
its activity during cell development but also in aging and during stressful or degen-
erative events. These discoveries have reaffirmed that mitochondria are key organ-
elles in the modulation of intracellular Ca2+ homeostasis.

The extensive functional studies on mitochondrial channels and transporters are 
now beginning to merge with structural information. After years of work on the phys-
iological importance of the voltage-dependent anion channel (VDAC) of the mito-
chondrial outer membrane, we now know the VDAC structure and how this channel 
is regulated by cytosolic proteins. The groundbreaking research solving VDAC struc-
ture stimulated major recent findings regarding the function and regulation of this 
large mitochondrial transport channel. The impressive amount of data accumulated 
from structural, biochemical, and biophysical studies makes feasible at last the deci-
phering of the exact mechanisms governing selective metabolite transport through 
VDAC and its signature gating. Modeling studies using modern powerful computa-
tional approaches offer insights at the molecular level on VDAC’s function in mam-
malian and plant cells. While the potential across the inner membrane (the 
mitochondrial potential) has been successfully measured since the 1950s, the exis-
tence of a potential across the outer membrane is still debated. Conventional thinking 
holds that this potential is essentially zero due to the high abundance of VDAC in the 
outer membrane. An intriguing theoretical model of the outer membrane potential 
identifies the VDAC-hexokinase complex as a potential-generating “battery.” The 
model incorporates the well-known ability of VDAC to gate under applied potential, 
thus giving a new physiological relevance not only to the VDAC voltage gating but 
also to the channel’s interaction with hexokinases and other cytosolic regulators, such 
as tubulin and alpha-synuclein. Investigations of this mitochondrial channel from dif-
ferent tissues and species present a good example of how a combination of structural, 
functional, and modeling studies delivers results inaccessible by a single approach.

Preface
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Mitochondrial steroidogenesis, the process by which mitochondria maintain an 
effective exchange of sterols between mitochondria and other cellular compart-
ments, has taken on new importance. The 18  kDa protein translocator protein 
(TSPO), known to shuttle cholesterol into the mitochondria for pregnenolone syn-
thesis, possesses the specific function of mediating cholesterol transport across the 
mitochondrial membranes. Thus, the importance of the recently discovered high- 
resolution TSPO structure is difficult to overestimate. TSPO is another impressive 
example of how a breakthrough in structural studies stimulates research leading to 
progress in our understanding of mitochondrial function and provides essential 
clues for defining therapeutic strategies against a wide range of diseases.

Mitochondria communicate with other cellular compartments by exchanging 
information in the form of ions, metabolites, proteins, amino acids, and nucleic 
acids. Without exception, each exchange molecule must cross one or both mito-
chondrial membranes. Considering that almost all mitochondrial proteins have to be 
delivered from the cytoplasm, the protein import machinery spanning both mito-
chondrial membranes is vital for the control of not only mitochondrial but also 
whole-cell metabolism. With the recent development of tracing techniques, interest 
in the field of mitochondrial protein import has surged, leading to the identification 
of the regulatory mechanisms of protein import pathways.

The pro- and anti-apoptotic Bcl-2 members have remained a focus of intensive 
research for 20 years, not only because they orchestrate and execute apoptosis by 
congregating on mitochondrial membranes but also because they form a new, fasci-
nating class of large oligomeric channels in the outer membrane. By forming multi- 
domain channels in the mitochondrial outer membrane, pro-apoptotic proteins, such 
as Bax and Bak, irreversibly trigger apoptosis. In parallel with progress in our 
understanding of endogenous mitochondrial channel structure and functions, recent 
advancements in structural and imaging methods have led to breakthroughs in 
understanding the complex relationships between mitochondria and Bcl-2 family 
proteins. The notion that mitochondria are “passive” players in programmed cell 
death or apoptosis has been put to rest; modern research considers mitochondria and 
the Bcl-2 family of proteins as equal players and co-regulators of both cell death and 
energy metabolism.

This book illustrates a surprising aspect of many mitochondrial endogenous and 
associated proteins: they possess multiple functions. Sometimes these functions are 
quite opposite like the “pro-” and “antilife” activities of cytochrome c, ATP syn-
thase, or Bcl-2 proteins. Mechanistically, these multiple functions most likely arise 
from protein-protein, protein-lipid, and protein-ion interactions between mitochon-
drial proteins (such as interactions between membrane proteins TSPO and VDAC or 
the interactions of pyruvate dehydrogenase, the key enzymatic complex, with other 
players of the tricarboxylic acid cycle) as well as between mitochondrial and cyto-
solic proteins (such as interactions with Bcl-2 proteins or interaction of VDAC with 
cytosolic proteins) and ions (such as Ca2+). This complex array of interacting  
proteins, lipids, and signaling pathways has resulted, from time to time, in 
 understandable confusion in the interpretation of results, which has occasionally 
moved the field in unproductive directions. With the increasing involvement of 

Preface
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modern computational and systems biology approaches, future confusion will hope-
fully be minimized or at least short-lived. At the same time, the overwhelming com-
plexity of mitochondrial signaling pathways challenges our curiosity and attracts 
fearless new researchers into the field.

Bethesda, MD, USA Tatiana K. Rostovtseva
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Chapter 1
Mitochondrial Ca2+ Handling and Behind: 
The Importance of Being in Contact 
with Other Organelles

Riccardo Filadi, Pierre Theurey, Alice Rossi, Chiara Fedeli,  
and Paola Pizzo

R. Filadi • P. Theurey • A. Rossi • C. Fedeli 
Department of Biomedical Sciences, University of Padova, Padova, Italy 

P. Pizzo (*) 
Department of Biomedical Sciences, University of Padova, Padova, Italy 

Neuroscience Institute, National Research Council (CNR), Padova, Italy
e-mail: paola.pizzo@unipd.it

1.1  The Mitochondrial Network as a Fundamental Structure 
in Cellular Ca2+ Homeostasis

The capacity of mitochondria to take up Ca2+ was first documented in the 1960s 
(Deluca and Engstrom 1961). Mitchell’s chemiosmotic theory, proposed in the 
same years (Mitchell and Moyle 1967), early provided the ultimate thermodynamic 
basis for the entry of Ca2+ (i.e., a positively charged ion) into the mitochondrial 
matrix, thanks to the generation, by the respiratory chain, of an electrochemical 
gradient (Δѱ) across the inner mitochondrial membrane (IMM), negative on the 
side of the matrix (−180 mV). However, the molecular mechanisms and the signifi-
cance of this accumulation have started to be elucidated much more recently. Since 
the pivotal studies on isolated mitochondria, it was clear that the outer mitochon-
drial membrane (OMM) is largely permeable to ions and small solutes (at least in 
part due to the presence of different isoforms of the voltage-dependent anion chan-
nels, VDACs; see Chaps. 7, 8, 9, 10, and 11), and thus it is not a limiting step for 
mitochondrial Ca2+ accumulation. On the contrary, the inner mitochondrial mem-
brane (IMM) is highly impermeable to ions and requires specialized transport 
mechanisms (Bragadin et al. 1979). The molecular identity of the underlying pro-
teins has been only recently revealed (Baughman et al. 2011) (see also Chap. 2), but 
their activity was functionally characterized in the 1970s. The mitochondrial high- 
capacity mechanism to take up Ca2+ was called “mitochondrial Ca2+ uniporter” 

mailto:paola.pizzo@unipd.it
http://dx.doi.org/10.1007/978-3-319-55539-3_7
http://dx.doi.org/10.1007/978-3-319-55539-3_8
http://dx.doi.org/10.1007/978-3-319-55539-3_9
http://dx.doi.org/10.1007/978-3-319-55539-3_10
http://dx.doi.org/10.1007/978-3-319-55539-3_11
http://dx.doi.org/10.1007/978-3-319-55539-3_2
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(MCU) and demonstrated to exhibit dependence on Δѱ, sensitivity to the inhibitor 
ruthenium red, low affinity for Ca2+ (Kd ~ 20 μM), and Ca2+ cooperativity (Carafoli 
2003). In addition, the existence of antiporters that export Ca2+ from the matrix in 
exchange for Na+ (especially in excitable tissues, such as the brain and heart) or H+ 
(in non-excitable tissues, such as liver) further controls and limits mitochondrial 
Ca2+ accumulation (Nicholls and Crompton 1980).

The initial enthusiasm for mitochondria in the cellular Ca2+ scenario temporarily 
vanished in the 1980s. Indeed, the development of fluorescent indicators and the 
discovery that inositol 1,4,5-triphosphate (IP3, generated upon stimulation of 
plasma-membrane (PM) receptors coupled to phospholipase C (PLC)) induces the 
release of Ca2+ into the cytosol from a “non-mitochondrial intracellular store” (Streb 
et  al. 1983) clearly demonstrated that physiological cytosolic [Ca2+] oscillations 
(ranging from 50 to 100 nM in basal conditions, to peaks of 1–3 μM) are not com-
patible with the activation of MCU, whose Kd is around 20 μM (Patron et al. 2013). 
Thus, the initial idea of mitochondria as key organelles in the modulation of intra-
cellular Ca2+ homeostasis was overcome by the general consensus that, only under 
pathological conditions with a massive cytosolic Ca2+ overload, an appreciable 
mitochondrial Ca2+ uptake would occur.

The introduction of genetically encoded Ca2+ probes targeted to the mitochon-
drial matrix (firstly aequorin (Rizzuto et al. 1992) and then GFP-based fluorescent 
probes (Miyawaki et al. 1997)) showed, however, that, upon cell stimulation, mito-
chondria promptly take up Ca2+ in a fashion that largely exceeds what is expected on 
the basis of the Kd of MCU for Ca2+, thus actively taking part in the regulation of the 
intracellular Ca2+ dynamics. The contradiction between these data was only appar-
ent and was solved by the demonstration that mitochondria are strategically posi-
tioned close to the regions of Ca2+ release from the intracellular stores (mainly the 
endoplasmic reticulum, ER (Rizzuto et al. 1998)), or Ca2+ entry from the PM. Indeed, 
in these areas, the opening of specific Ca2+ channels generates, close to their mouths, 
transient microdomains of high [Ca2+] that are experienced by nearby mitochondria, 
allowing the overcoming of the low affinity of MCU and resulting in a rapid mito-
chondrial Ca2+ accumulation that follows the cytosolic Ca2+ rise. Below, a brief sum-
mary on Ca2+ microdomain generation is provided.

1.1.1  Molecular Determinants of Ca2+ Microdomains

A microdomain can be defined as a localized region, within a cell, that differs in 
composition from the surrounding areas. Usually, the term refers to the presence, 
for specific molecules, of appreciable concentration gradients in a given environ-
ment, which can be relatively long lasting or, on the contrary, promptly drop out 
within a few ms. The importance of the existence of microdomains is immediately 
clear when referred to those of Ca2+. Indeed, the versatility of Ca2+ as a key intracel-
lular second messenger, regulating different physiological processes, is achieved by 
combining the possibility to transmit Ca2+ signals as temporally distinct oscillations 
and by confining these events within spatially defined regions (not necessarily 

R. Filadi et al.
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membrane enclosed), allowing a fine and localized regulation of specific activities 
(Berridge et al. 2000). The generation of a Ca2+ microdomain typically begins with 
the opening of few Ca2+ channels located in the membrane of intracellular Ca2+ 
stores (endoplasmic/sarcoplasmic reticulum or Golgi apparatus) or in the PM. In the 
simpler model, immediately after their opening, Ca2+ flows from the mouth of the 
channels and spreads into the cytosol (where its concentration is lower), following 
Fick’s diffusion laws (for a recent review, see Filadi and Pozzan (2015)). Accordingly, 
its flux in a given point is inversely proportional to the distance from the channel. 
However, the presence of different Ca2+ buffers (typically proteins, such as parval-
bumin/calbindin or the Ca2+-modulated calmodulin/calcineurin, but also other mol-
ecules, such as ATP and negatively charged phospholipids), the high viscosity of the 
cytosol, the existence of organelles endowed with pumps/exchangers/channels that 
can promptly remove or further release Ca2+, and the possibility to tune the fre-
quency and the time of channel opening are all players that actively shape the 
microdomain (Filadi and Pozzan 2015).

Elegant mathematical models (Naraghi and Neher 1997) and, more recently, 
Ca2+-imaging experiments with sufficient temporal and spatial resolutions (Tadross 
et al. 2013) allowed to define the shape of a Ca2+ microdomain. Upon opening of a 
channel, within a few hundreds of nm, a Ca2+ microdomain is formed and reaches 
the steady state in less than 1 ms. When the channel closes, the microdomain van-
ishes immediately. A Ca2+ gradient was calculated to extend up to 50–70 nm from 
the mouth of a channel (Naraghi and Neher 1997), but clearly the amplitude of a 
Ca2+ microdomain in the cellular context depends on a multitude of parameters. 
Among them, particularly important are the flux of Ca2+ from a given channel deter-
mined by its current (the higher the flux, the higher the [Ca2+] reached in the micro-
domain), the concentration/affinity/diffusion constant of the buffers that surround 
the channel (the higher these parameters are, the higher the capacity of a given 
buffer to damp the microdomain), the presence of isolated or clustered channels (the 
more channels opening, the higher the flux of Ca2+), and the abundance of the Ca2+ 
reservoir (virtually infinite in the case of the extracellular milieu, depletable in the 
case of intracellular Ca2+ stores).

The generation of Ca2+ microdomains on the surface of mitochondria has vari-
able and important consequences for the cell fate, from activation of mitochondrial 
metabolism to control of cell death, from regulating autophagy to sustain tumor 
growth (see below).

1.1.2  Generation of Ca2+ Microdomains on the Mitochondria 
Surface: The Importance of Being Coupled with Other 
Cell Compartments

As discussed above (and see also Chap. 2), the process of mitochondrial Ca2+ 
uptake largely takes advantage from the exposure of mitochondria to high [Ca2+] 
microdomains on their surface, thanks to the location of these organelles (or, more 

1 Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact…
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precisely, of part of them) near the mouths of Ca2+ channels. On this aspect, the 
close proximity of mitochondria to the ER and, to a lesser extent, to PM, has been 
extensively investigated (Table 1.1 and see also next section).

As to the former, the first evidence that, upon an IP3-dependent Ca2+ release from 
the ER, mitochondria experienced on their surface an averaged Ca2+ concentration 
higher than that of the bulk cytosol was obtained thanks to the targeting of the pho-
toprotein aequorin to the mitochondrial inter-membrane space (MIMS) (Rizzuto 
et  al. 1998). Regions of close proximity between mitochondria and ER were 
observed in living cells, supporting the idea that mitochondrial Ca2+ uptake may be 
favored by their juxtaposition to the sites of Ca2+ release from the ER (Rizzuto et al. 
1998). A multitude of evidence in support of this notion were provided, for instance, 
an increased heterogeneity in the mitochondrial Ca2+ peaks upon a dynamin-related 
protein 1 (Drp1)-overexpression-dependent mitochondria fragmentation (Szabadkai 
et al. 2004). These results, obtained in single-cell Ca2+ imaging experiments employ-
ing mitochondrial GFP-based Ca2+ probes, further suggested a physiological origin 
of the mitochondrial Ca2+ rises from localized regions that then spread along the 
mitochondrial network. Finally, using FRET-based Ca2+ probes spanning on the 
cytosolic side of the OMM, it was directly demonstrated that, during an IP3- 
dependent ER Ca2+ release, microdomains of high [Ca2+] (10–30 μM, compared to 
peaks of up to 3 μM in the bulk cytosol) are promptly generated on discrete sites on 
the OMM (Csordas et al. 2010; Giacomello et al. 2010) (Fig. 1.1).

Regarding the distance between ER and mitochondria for an efficient Ca2+ trans-
fer, it has been demonstrated, by the use of artificial linkers, that a decrease in the 
distance, or an increase in the surface of apposition, between the two organelles, 
correlates with an increase in the efficiency of Ca2+ transfer (Csordas et al. 2006, 
2010). However, below 7 nm in the distance between the two opposing membranes, 
the process resulted to be substantially impaired, likely because the IP3Rs span for 
~10 nm from the ER membrane and thus cannot be accommodated when the width 
of the cleft is lower. However, the physiological thickness of ER-mitochondria 
appositions observed by EM (10–15 up to 25–30 nm in the case of smooth ER and 
25–30 up to 50–80 nm in the case of rough ER) seems to be largely compatible 
with the process. Moreover, it must be stressed that, as discussed above, a Ca2+ 
microdomain is predicted to extend from the mouth of a channel for at least 50 nm 
(Naraghi and Neher 1997). In addition, given that IP3Rs form clusters (Foskett 
et al. 2007) and that they can open together, potentially engaging also the opening 
of Ryanodine receptors (RyRs) in the process of the Ca2+-induced Ca2+ release 
(CICR), further increasing the amount of Ca2+ locally released from the ER, it 
appears reasonable that, under certain conditions, microdomains of high [Ca2+] can 
reach an extension of up to 100–150 nm. Thus, even mitochondria located at dis-
tances of ~100 nm may be exposed to [Ca2+] sufficiently high to induce an efficient 
uptake of Ca2+. Importantly, regions in which ER membranes (especially those of 
the rough ER) are juxtaposed and follow the profile of the OMM at distances of 
50–100  nm have been reported (Filadi et  al. 2015; Giacomello and Pellegrini 
2016); whether they are physiologically relevant is not clear. Recently, a mathe-
matical model proposed a distance between IP3Rs and MCU of ~30–85 nm for an 
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optimal ER-mitochondria Ca2+ transfer (Qi et  al. 2015). Considering that the 
 distance between the OMM and the IMM (where MCU is located) is at least of 
10–20 nm (Reichert and Neupert 2002), the optimal gap between the ER and the 
OMM is predicted to be in the range of 10–60 nm. Surely, the fact that the thick-
ness of the cleft is dynamically regulated may suggest that different types of con-
tact could have different functions or represent dormant states of contact, ready to 
be recruited and reactivated upon a change in the metabolic state of the cells (Sood 
et al. 2014; Giacomello and Pellegrini 2016).

In addition to IP3Rs, the ER of different cell types and the sarcoplasmic reticu-
lum (SR) of the striated muscles are endowed with RyRs. Though in principle the 
situation is similar to that of IP3Rs (i.e., a Ca2+ microdomain near the mouth of 

Fig. 1.1 Mitochondria-ER tethering is fundamental for their Ca2+ crosstalk. Left panel: EM image 
of a MEF cell showing several close appositions between ER (orange) and OMM (purple) (The 
EM image was acquired by G. Turacchio, Institute of Protein Biochemistry (CNR), Naples). Scale 
bar: 100 nm. The juxtaposition between the two opposing membranes allows the generations of 
high [Ca2+] on OMM upon Ca2+ release from ER Ca2+ channels. Upper right panel: an SH-SY5Y 
cell transiently expressing the OMM-targeted cameleon Ca2+ probe N33-D1cpv. Yellow-to-red 
spikes indicate the generation of high [Ca2+] microdomains in discrete regions of OMM upon 
bradykinin cell stimulation (100 nM) and IP3-mediated ER Ca2+ release. Scale bar: 5 μm (Image 
modified from Filadi et al. 2012). Lower right panel: simulations of [Ca2+] changes over time upon 
IP3-mediated ER Ca2+ release in the bulk cytoplasm (black, dotted trace), at regions of 
ER-mitochondria interface (black, continuous trace) and in mitochondrial matrix (red trace). Note 
the different scales and that mitochondrial Ca2+ uptake is slightly delayed compared to the almost 
immediate generation of Ca2+ hot spots on mitochondrial surface

R. Filadi et al.
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RyRs can be formed upon their opening and be experienced by juxtaposed 
 mitochondria), the peculiar organization and ordered distribution of these Ca2+ 
channels in striated muscles make the case of SR-mitochondria coupling unique. 
Indeed, in this tissue, the situation is peculiar; while regions of close contact (medi-
ated by proteinaceous tethers of 10–15 nm (Franzini-Armstrong 2007; Boncompagni 
et al. 2009)) between SR and mitochondria have been clearly documented, RyRs are 
specifically clustered in the dyadic cleft, i.e., the portion of SR (junctional SR) that 
faces the T-tubules (for a recent review, see Filadi and Pozzan (2015)). Importantly, 
the space between T-tubules and SR is too narrow (~10 nm) to allow the accommo-
dation of mitochondria, which have been reported to be at a distance of ~130 nm in 
skeletal muscle (Boncompagni et al. 2009) and ~35 nm in cardiomyocytes (Sharma 
et al. 2000), where the SR cisternae are flatter. However, as discussed above, the 
presence of RyR clusters and the fact that the two opposing membranes in the 
dyadic cleft represent a barrier (that only allows the lateral diffusion of Ca2+) are 
factors that shape the Ca2+ microdomain and laterally spread it, so that mitochondria 
surrounding the Ca2+ releasing unit (CRU) are exposed to [Ca2+] sufficiently high to 
induce an appreciable uptake, as measured in different experimental models (Pacher 
et al. 2000, 2002; Szalai et al. 2000; Robert et al. 2001; Rudolf et al. 2004; Drago 
et al. 2012). Though in adult cardiomyocytes it is still a matter of debate whether 
mitochondria could efficiently take up Ca2+ during the fast physiological Ca2+ tran-
sients in a beat-to-beat manner, in neonatal cardiomyocytes, such oscillations in 
mitochondrial Ca2+ have been measured (Robert et  al. 2001; Pacher et  al. 2002; 
Drago et al. 2012) and demonstrated to actively impact the amplitude of cytosolic 
Ca2+ rises (Drago et al. 2012).

Finally, as far as Ca2+ crosstalk is concerned, it is important to stress that the 
existence of regions of close apposition between mitochondria and ER/SR is physi-
ologically relevant not only for the process of mitochondrial Ca2+ uptake but also for 
ER Ca2+ handling. First of all, the physical presence of mitochondria near ER mem-
branes limits the free Ca2+ diffusion upon release from the ER Ca2+ channels, poten-
tially sustaining the local [Ca2+] and favoring its reuptake by SERCA pumps. 
Moreover, the local high [Ca2+] may have opposite effects: on the one hand, affect-
ing the process of CICR (recruiting and opening more Ca2+ releasing channels, 
RyRs and IP3Rs), and, on the other, negatively regulating the opening of IP3Rs 
when the local [Ca2+] reaches a certain threshold (Landolfi et al. 1998; Foskett et al. 
2007). On the contrary, upon MCU activation and rapid mitochondrial Ca2+ accu-
mulation, mitochondria can act as Ca2+ buffers that dampen not only bulk cytosolic 
Ca2+ peaks but also, locally, Ca2+ microdomains (Qi et al. 2015). However, given 
that mitochondria do not store Ca2+ (with the only exception of Ca2+ phosphates 
precipitation, favored by the alkaline pH; (Nicholls and Chalmers 2004)) and, after 
Ca2+ uptake, they release it back to the cytosol, the latter phenomenon could facili-
tate Ca2+ reuptake into the ER by the SERCA. In addition, mitochondria have been 
reported to locally sustain SERCA activity by fueling it with ATP (De Marchi et al. 
2011), further indicating the existence of a functional, bidirectional crosstalk.

Much less investigated has been the role of mitochondria-PM contacts in the 
process of mitochondrial Ca2+ uptake. In many excitable cell types, a fast mitochondrial 
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Ca2+ rise has been measured upon voltage-operated channel (VOC)’s opening and Ca2+ 
entry from the extracellular environment, subsequent to PM depolarization (see 
Giacomello et al. 2010 and, for a review, Rizzuto and Pozzan 2006). Thus, regions 
of high [Ca2+] are likely to be generated on the surface of sub-PM located mitochon-
dria when Ca2+ enters through VOC’s. On the contrary, more debated is the genera-
tion of such Ca2+ microdomains on the OMM upon capacitative Ca2+ entry (CCE)). 
Indeed, evidence that mitochondria are exposed to CCE-generated Ca2+ microdo-
mains has been provided (Quintana et al. 2006; Watson and Parekh 2012), and mito-
chondrial membrane potential, as well as functional mitochondrial Na+/Ca2+ 
exchanger, has been shown to be necessary to sustain CCE, likely because of mito-
chondria capacity to buffer sub-PM local Ca2+ increases and maintain CCE activa-
tion (Naghdi et  al. 2010). However, mitochondrial depolarization has also been 
described to negatively impact on CCE by a different Mfn2-dependent mechanism, 
impairing migration of the ER Ca2+ sensor stromal interaction molecule 1 (STIM-1) 
protein to form PM-located ER punctae, critical for CCE induction (Singaravelu 
et al. 2011). Notably, during CEE, the close apposition between ER and PM is nar-
row enough to exclude mitochondria from the mouth of PM-located Orai1 channels 
(calcium release-activated calcium channel protein 1), thus arguing against the pos-
sibility that mitochondria could be exposed to high [Ca2+] during CCE. Moreover, 
data recently obtained in our lab (Giacomello et al. 2010; Filadi et al. unpublished 
results) did not support an appreciable contribution of CCE to mitochondrial Ca2+ 
uptake. Probably, these contrasting results depend on the specific cell type employed 
in different studies and, consequently, on the amplitude of the Ca2+ influx and on the 
presence, or not, of mitochondria in the regions surrounding the ER-PM platform 
generated during CCE. Further investigations will be required to address this issue. 
Interestingly, however, in HeLa cells, the presence of sub-PM mitochondria has 
been suggested to indirectly modulate the activity of both PM Ca2+ ATPases (PMCA) 
and store-operated Ca2+ channels (Frieden et al. 2005). The phenomenon was pro-
posed to be due, again, to a possible Ca2+ buffering effect exerted by sub-PM mito-
chondria on the entry of the ion through the PM located channels (Frieden et al. 
2005). Thus, it appears clear how the interrelationship between mitochondria and 
PM, as for the ER, may be bidirectional.

1.2  Functional Consequences of Mitochondria-ER Ca2+ 
Cross-Talk

Ca2+ rises on the cytosolic surface of both the ER and mitochondria can have impor-
tant regulatory roles. For example, [Ca2+] in the mitochondrial inter-membrane 
space modulates the activity of metabolite carriers or dehydrogenases located on the 
outer surface of the IMM (see below); furthermore, as mentioned above, local mito-
chondrial Ca2+ sequestration has profound effects on the allosteric modulation of 
ER Ca2+-releasing channels. Regarding the [Ca2+] within mitochondria, two possi-
ble and opposite effects can be achieved: activation of mitochondrial metabolism by 
stimulating the Krebs cycle, NADH formation, and the respiratory chain activity, 

R. Filadi et al.
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with the result of an increase in ATP production, or sensitization toward cell death 
pathways, due to mitochondrial Ca2+ overload, opening of the mitochondrial perme-
ability transition pore (mPTP), and release of cytochrome C. Moreover, an impor-
tant role for ER-mitochondria Ca2+ transfer in modulating autophagy/mitophagy 
and tumor progression has been recently shown. While a more detailed discussion 
on the role of ER-mitochondria Ca2+ transfer in regulating cell death is provided 
elsewhere (see Chap. 6 and Orrenius et al. 2015 for a recent review), below a brief 
summary on activation of mitochondrial metabolism, autophagy, and cancer growth 
modulation by ER-mitochondria Ca2+ crosstalk is provided (Fig. 1.2).

1.2.1  Mitochondrial Metabolism

Bioenergetics homeostasis and mitochondrial functionality are two essential fea-
tures that provide the correct energy to the cell accordingly to its requirements; 
in particular, in excitable cells, such as neurons, cardiac, and skeletal muscle 

Fig. 1.2 Mitochondria interact with different organelles/compartments within the cell. The car-
toon represents multiple mitochondria interactions with other organelles, as detailed in the text. 
Red-dotted squares underline specific functions sustained by the indicated inter-organelle interac-
tion, with the representation of the main proteins involved; yellow-dotted squares are those only 
identified in yeast; in the black-dotted square are represented proteins that have been implicated in 
the structure of the inter-organelle interface. See text for all the abbreviations used and the descrip-
tion of the specific functions. In italic, yeast proteins

1 Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact…
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cells, ATP produced through the glycolysis process is not enough to guarantee 
the multiplicity of activities of these cells, and thus mitochondria become their 
energy suppliers.

Ca2+ is a specific signal for activating mitochondria metabolism: under resting 
conditions, the mitochondrial matrix Ca2+ level is in equilibrium with that of the 
cytosol, i.e., around 100 nM. Upon cytosolic Ca2+ rises, due to Ca2+ release from the 
intracellular stores, mainly the ER, or to Ca2+ entry from the extracellular space, and 
the generation of high Ca2+ microdomains (see above), mitochondria can take up 
Ca2+ thus increasing its concentration in the matrix, reaching, in some types of cells, 
values above 100 μM (Rizzuto et al. 1992; Pozzan and Rizzuto 2000). It has been 
known for a long time that a rise in Ca2+ levels in the matrix, due to an increase in 
the workload or to a specific cell stimulation, increases NADH levels, mitochon-
drial metabolism, and ATP synthesis (Jouaville et al. 1999; Pitter et al. 2002). On 
the other hand, it has been demonstrated that the buffering of Ca2+ rises, obtained 
upon cell stimulations, in the cytosol or in the mitochondrial matrix, limits the 
increase in mitochondrial metabolism (Wiederkehr et al. 2011). More recently, it 
has been demonstrated that also at resting conditions, the ER-mitochondria Ca2+ 
transfer is important for mitochondrial energy metabolism: the inhibition, or the 
absence, of the transfer causes a decrease in ATP levels, an increase in AMPK phos-
phorylation, and, eventually, a strong autophagy activation (Cardenas et al. 2010) 
(see below).

Mitochondria produce ATP for the cell through two main processes, the tricar-
boxylic acid (TCA) or Krebs cycle and the respiration by the electron transport 
chain (ETC). These two processes need pyruvate, the product of glycolysis, to move 
in the mitochondrial matrix where it is converted in acetyl-CoA, which enters in the 
TCA cycle. From each molecule of acetyl-CoA, mitochondria produce three NADH 
and one FADH2. These are two high-energy molecules that are essential for the ETC 
activity. Since 1970, it is known that four mitochondrial dehydrogenases are regu-
lated by Ca2+. One of these, the FAD-glycerol phosphate dehydrogenase (GPDH), is 
located in the IMM and senses the cation concentration in the intermembrane space, 
while the other three enzymes catalyze reactions of the TCA cycle (or immediately 
upstream) and sense mitochondrial matrix [Ca2+]: pyruvate dehydrogenase (PDH), 
isocitrate dehydrogenase (ICDH), and oxoglutarate dehydrogenase (OGDH) 
(Denton 2009). GPDH transfers, through a redox reaction, reducing equivalents 
from NADH, produced by glycolysis, to the ETC as FADH2; it presents a Ca2+-
binding motif that lies in the intermembrane space and has a Kd for Ca2+ of 0.1 μM; 
moreover, its activation increases cellular ATP levels (Garrib and McMurray 1986). 
PDH plays a crucial role in mitochondrial metabolism since it converts pyruvate 
into acetyl-CoA, allowing the TCA cycle activation. Its activity is regulated by a 
kinase/phosphatase cycle: when phosphorylated it is inactive, while a dephosphory-
lation event activates it. Ca2+ binds (Kd ~ 1 μM) both the dehydrogenase itself and 
its phosphatase, increasing the active form of the enzyme (Turkan et al. 2004). On 
the other hand, ICDH and OGDH catalyze two reactions of the TCA cycle: they are 
both regulated by Ca2+ through the direct binding of the cation; the latter event 
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induces an increase in the affinity of the enzymes for their substrates (Kd of 20–30 
μM and 1 μM, respectively; (Denton et al. 1978)).

More recently, in isolated mitochondria, it has been reported that Ca2+ can regu-
late directly the ETC and the F1F0 ATP synthase activity, indicating that mitochon-
drial matrix Ca2+ concentration is a key factor not only for TCA cycle enzymes but 
it can directly stimulate, independently from dehydrogenase functionalities, ATP 
production, and the activity of the respiratory chain complexes (Territo et al. 2000; 
Glancy et al. 2013).

As mentioned above, Ca2+ can regulate mitochondrial functions without 
reaching their matrix, modulating the shuttle of nucleotides, metabolites, and 
cofactors inside the organelles. Specific mitochondrial carriers (MCs), localized in 
the IMM, exchange nucleotides, substrates, and metabolites between cytosol 
and mitochondria. Among them, there are two Ca2+-binding MCs (CaMCs): the 
L-CaMCs (long Ca2+-dependent MCs) and the S-CaMCs (short Ca2+-dependent 
MCs). Both molecules sense Ca2+ in the intermembrane space by the presence 
of EF-hand Ca2+-binding domains localized in their N-terminal fragments fac-
ing the intermembrane space (del Arco and Satrustegui 2004; Satrustegui et al. 
2007).

L-CaMCs are the aspartate/glutamate carriers (AGC), and they belong to the 
malate-aspartate shuttle (MAS). They catalyze the exchange of a glutamate and an 
H+ (from the cytosol) for an aspartate (from mitochondria) and, being part of the 
MAS, the entry into mitochondria of a NADH molecule that contributes to mito-
chondrial metabolism (Palmieri et al. 2001). The role of AGC in substrates trans-
port has been known for several years but only recently, thank to structural studies, 
it has been shown its Ca2+ dependence by the presence of an EF-hand domain in its 
N-terminal fragment. Moreover, AGC is activated by low [Ca2+] (its Kd is around 
300 nM), well below the concentration needed for MCU activation. Thus, also low 
cytosolic Ca2+ rises can induce the entrance into mitochondria of NADH and 
metabolites, stimulating ETC activity and ATP production (Pardo et  al. 2006; 
Thangaratnarajah et al. 2014).

S-CaMCs, instead, are ATP-Mg/Pi carriers that catalyze the exchange of ATP 
and ADP for one phosphate across the IMM, modulating the levels of adenine 
nucleotides (AdN: AMP+ADP+ATP) inside mitochondria; due to this function, 
these carriers can modulate several cell functionalities, such as mitochondrial 
metabolism and oxidative phosphorylation. A defect in these carriers, or their 
absence, in different tissues, can induce an impairment in energy production 
required for several functionalities (Anunciado-Koza et  al. 2011; Amigo et  al. 
2013). The activity of ATP-Mg/Pi carriers is regulated by Ca2+, and they also 
present EF-hand Ca2+ binding domains, homologous to calmodulin, in their 
N-terminal parts facing the intermembrane space; their Kd is around 1.5–3 μM, 
requiring a higher increase in cytosolic [Ca2+], than L-CaMCs, for their activation 
and the regulation of AdN levels within mitochondria (Haynes et al. 1986; Nosek 
et al. 1990).

1 Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact…
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1.2.2  Autophagy/Mitophagy

Ca2+ plays a complex role in autophagy regulation and the first link between 
autophagy, and intracellularly stored Ca2+ was described in rat hepatocytes in 1993 
(Gordon et al. 1993). More recently, both inhibitory and activatory effects of Ca2+ 
on autophagy induction have been reported (see La Rovere et al. (2016) for a recent 
review).

As far as Ca2+ transfer from the ER to mitochondria is concerned, it has been 
shown that, under basal conditions, the constitutive, low level, IP3R-mediated Ca2+ 
release and subsequent Ca2+ uptake by mitochondria, throughout the MCU com-
plex, are essential for the maintenance of optimal cellular bioenergetics (see above). 
As a consequence of this energetic balance, autophagy is maintained at low levels 
in healthy cells. On the other hand, disturbances in ER-mitochondria Ca2+ transfer 
trigger autophagy by increasing the AMP/ATP ratio (due to a decrease in mitochon-
dria bioenergetics) and activating AMPK, a highly sensitive indicator of cellular 
energy status whose activity increases under conditions of metabolic stress 
(Cardenas et al. 2010). The importance of the ER-mitochondria Ca2+ crosstalk in 
autophagy induction was also confirmed by molecular (upon MCU overexpression) 
or pharmacological (upon treatments with drugs that increase the uptake of Ca2+ by 
mitochondria) approaches finalized to correct dysfunctional mitochondrial Ca2+ 
uptake in human fibroblasts from mitochondrial disorder patients, resulting, in these 
cells, in a rescue of autophagy levels similar to those observed in control cells 
(Granatiero et al. 2016). Consistently, stable knockdown of MCU and MCUR1, key 
components of the mitochondrial Ca2+ uptake machinery (Murgia and Rizzuto 
2015) (and see also Chap. 2), reduced cellular oxygen consumption rate, activated 
AMPK, and induced autophagy (Mallilankaraman et al. 2012).

Finally, other alterations in mitochondrial Ca2+ signaling can lead to mitophagy. 
PINK-1, a protein involved in mitophagy initiation, regulates Ca2+ efflux from mito-
chondria through the Na+/Ca2+ exchanger, and its loss may lead to mitochondrial 
Ca2+ accumulation (Gandhi et al. 2009), leading to mPTP opening and release of 
pro-apoptotic factors. In addition, elevation of local Ca2+ concentrations in the 
vicinity of mitochondria, a phenomenon very much depending on ER-mitochondria 
tethering (see above), with impaired membrane potential, promotes the activation of 
the mitochondrial shaping molecule Drp1, triggering mitochondrial fission and sub-
sequent mitophagy (Sandebring et al. 2009).

More recently, it has been demonstrated that the overexpression of Parkin, the 
cytosolic E3 ubiquitin ligase involved in mitophagy, favors, in normal conditions, 
ER-mitochondria tethering and their Ca2+ crosstalk, sustaining mitochondria mor-
phology and ATP production and consequently limiting ubiquitination of mito-
chondrial targets and mitophagy (Cali et al. 2013a). Upon mitochondrial damage 
(such as organelle depolarization), the protective effect of Parkin is however 
insufficient, and, after its recruitment to mitochondria, the mitophagic process is 
activated.

R. Filadi et al.
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1.2.3  Cancer

Among multiple mechanisms, cancer growth relies mainly on dysregulation on cell 
proliferation and cell death, and Ca2+ and mitochondria are crucial actors in modu-
lating both events. In particular, while the correct mitochondrial Ca2+uptake sustains 
the increased energy demand of proliferating cells, mitochondrial Ca2+ overload 
induces organelles morphology alterations, permeabilization, and swelling, with the 
subsequent release of pro-apoptotic factors. Both Ca2+ -dependent pathways are 
very much linked to mitochondria-ER coupling.

Indeed, enhanced resistance to apoptosis of cancer cells involves also dysregula-
tion of the ER-mitochondria Ca2+ axis and several tumor suppressor and oncogenic 
proteins, mutated or deleted in various types of human cancers, act at the interface 
between the two organelles and modify their Ca2+ crosstalk. The oncogene AKT, for 
example, has been reported to phosphorylate two key targets, hexokinase 2 (HK2), 
promoting its binding with the mitochondrial channel VDAC1 (Majewski et  al. 
2004), and the ER Ca2+-releasing channel IP3R3 (Marchi et al. 2012), which in turn 
negatively affects the Ca2+-dependent apoptotic response. On the contrary, the tumor 
suppressor protein phosphatase and tensin homolog (PTEN), commonly lost or 
mutated in human cancers, have been shown to directly interact with IP3R, counter-
acting, by its enzymatic activity, the reduced IP3R-dependent Ca2+ release mediated 
by AKT phosphorylation (Bononi et al. 2013). The tumor suppressor PML has been 
shown to act on this ER-mitochondria Ca2+ pathway as well: it promotes the forma-
tion of a multiprotein complex containing IP3R3, AKT, and the protein phosphatase 
PP2a, which regulates ER-mitochondria Ca2+ transfer (Giorgi et al. 2010). Finally, 
other two examples that further indicate the ER-mitochondria Ca2+ crosstalk as a 
critical hub in cancer growth are the tumor suppressor proteins BRCA1 and p53: the 
first was found to be recruited to the ER during apoptosis in an IP3R-dependent 
manner, sensitizing the IP3R to its ligand, thus favoring the Ca2+-dependent apop-
totic response (Hedgepeth et al. 2015); the second, in an extra-nuclear fraction, has 
been shown to interact with the ER Ca2+-ATPase SERCA, modulating ER Ca2+ con-
tent and mitochondrial Ca2+ uptake, organelle swelling, and apoptosis induction 
(Giorgi et  al. 2015). Of note, recently, the cancer-testis antigen FATE1 has been 
reported to uncouple the two organelles and to protect from Ca2+- and drug-induced 
cell death (Doghman-Bouguerra et  al. 2016), highlighting the importance of the 
modulation of ER-mitochondria interface in cancer cells.

1.3  Molecular Components Involved in Mitochondria- 
Organelles Contacts

The first electron microscopy (EM) studies of cellular ultrastructure reporting that 
mitochondria are in physical contact with other organelles, in particular with the 
ER, dated back to the 1950s (Robertson 1960). In these identified regions of 
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juxtaposition, the two opposing organelles do not fuse but maintain their identity 
(Fig. 1.1 and Table 1.1).

Contacts with the ER are conserved between different species (Rowland and 
Voeltz 2012) and have been well documented in yeast, mammals, and, recently, also 
in plants (Mueller and Reski 2015). Different types of contact have been reported, 
depending on the fact that mitochondria can be engaged in juxtaposition with both 
smooth ER and rough ER and that distances between ER membranes and OMM can 
be extremely variable, ranging from ~10 nm up to 80–100 nm (for a recent review, 
see (Giacomello and Pellegrini 2016)). However, while in the case of the classical 
close contacts (below 25–30 nm), OMM and ER membranes appear to be clearly 
tethered by electron-dense filamentous structures, proteinaceous in their nature 
(Csordas et al. 2006); such structures, to the best of our knowledge, have never been 
observed for the more distant areas of apposition. A complete list of the proteins that 
has been involved in the modulation of ER-mitochondria coupling is far away from 
the scope of the present chapter. However, below, a brief summary of both yeast and 
mammalian tethers is provided (Fig. 1.2).

In yeast, the ER-mitochondria encounter structure (ERMES), formed by the 
cytosolic protein Mdm12, the ER membrane protein Mmm1, and the OMM pro-
teins Mdm34 and Mdm10, was identified by a genetic screening (Kornmann et al. 
2009). ERMES has been implicated in ER-mitochondria lipid transport (AhYoung 
et al. 2015), though different groups failed to find defects in lipid metabolism in 
cells lacking the complex (reviewed in Murley and Nunnari 2016). Importantly, 
ERMES homologs have not been identified in mammals.

Recently, a proteomic analysis identified the ER transmembrane protein Ltc1/
Lam6 as a potential additional tether in yeast, thanks to its interaction with the 
OMM proteins TOM70/TOM71 (Murley et al. 2015).

ER-mitochondria contacts, in both yeast and mammals, mark sites of mitochon-
drial division (Friedman et al. 2011), and, in yeast, the additional ERMES-associated 
subunit Gem1 (a GTPase whose mammalian homolog is Miro-1) regulates 
ER-mitochondria connections (Kornmann et  al. 2011) and ER-dependent mito-
chondrial division (Murley et al. 2013).

In metazoan cells, while the functional significance of the ER-mitochondria jux-
taposition has been established in a number of different studies, the nature of the 
proteins involved in the physical tethering between the two organelles  remains 
much less understood. Different proteins have been demonstrated to modulate this 
parameter, but the formal demonstration that the lack of a given protein abolish 
close contacts has never been provided. Notably, the possibility that different and 
independent tethering complexes may exist, and compensate one for the lack of the 
others, increases the complexity of the above analysis.

Among the proteins that have been associated with ER-mitochondria tethering, 
the OMM resident protein Mitofusin-2 (Mfn2) has received a lot of attention. Mfn2 
was initially proposed to be a tether, given the presence of a fraction of the protein 
in ER membranes (particularly in the mitochondria associated membranes, MAMs) 
and its ability to form homotypic interactions with the OMM resident counterpart 
(de Brito and Scorrano 2008). The demonstration that the lack of this protein deeply 
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reduces ER-mitochondria co-localization, visualized by confocal microscopy 
 techniques, as well as a number of indirect evidence involving Mfn2 in organelles’ 
coupling (Schneeberger et al. 2013), initially created a consensus on the fact that 
Mfn2 could be a tether. However, we (Filadi et al. 2015, 2016; Leal et al. 2016) and 
others (Cosson et al. 2012; Wang et al. 2015) have shown, by a number of different 
approaches, that Mfn2 depletion is actually associated to an increased 
ER-mitochondria physical and functional coupling, challenging the initial idea of 
Mfn2 as a tether. Interestingly, a Gp78 (an E3-ubiquitin ligase)-dependent Mfn2 
degradation has been correlated with an increased association of rough ER to mito-
chondria, while Mitofusin-1 has been shown to negatively affect the tethering with 
the smooth ER, thus suggesting that the coupling with mitochondria of rough and 
smooth ER may be differently regulated (Wang et al. 2015).

In addition to Mfn2, others proteins have been reported to be involved in the 
regulation of ER-mitochondria juxtaposition. PACS-2, a cytosolic multi-sorting 
protein, have been shown to control their apposition in a BAP31 (an ER cargo 
receptor)-dependent manner (Simmen et al. 2005), though its role as a molecular 
scaffold or as a simple regulator is not fully clarified.

Interestingly, a physical interaction between the ER resident IP3Rs (especially 
the MAM-enriched IP3R3), the cytosolic fraction of the mitochondrial chaperone 
Grp75, and the OMM located VDAC1 has been reported and demonstrated to be 
functionally involved in the efficacy of mitochondrial Ca2+ uptake (Szabadkai et al. 
2006). However, the interpretation that sees the IP3Rs-Grp75-VDAC1 complex as 
a potential tether between the two opposing organelles is, in our opinion, unlikely, 
because in DT40 cells knockout (KO) for the three IP3Rs isoforms, it has been 
demonstrated, by EM analysis, that ER-mitochondria physical association is not 
modified (Csordas et al. 2006), thus arguing against a role of the IP3Rs as tethers.

The familial Alzheimer’s disease (FAD)-related protein Presenilin-2 (PS2) has 
been shown by us to favor the physical and functional ER-mitochondria coupling, 
with FAD-linked PS2 mutants more effective than the wt counterpart in the modula-
tion of these parameters (Zampese et al. 2011; Kipanyula et al. 2012). Recently, we 
have demonstrated that PS2 is able to increase the number of ER-mitochondria 
close contacts in a Mfn2-dependent manner, by sequestering the latter protein and 
thus removing its negative effect on organelles tethering (Filadi et al. 2015, 2016) 
(see also below).

An interaction between the ER resident protein VAPB and the OMM protein 
PTPIP51 has also been demonstrated to positively correlate with the physical and 
functional ER-mitochondrial coupling (De Vos et al. 2012).

Finally, the ER-stress related protein kinase RNA-like ER kinase (PERK; see 
also below) has also been shown to modulate ER-mitochondria contact sites, inde-
pendently from its enzymatic activity and canonical role during ER stress (Verfaillie 
et al. 2012; van Vliet and Agostinis 2016). As to the contacts with the PM, their 
functions and molecular composition have been much less investigated, and con-
trasting results have been obtained. For instance, in HeLa cells, it has been reported 
that ~10% of the PM surface co-localized with mitochondria and that sub-PM mito-
chondria are important for the modulation of PM Ca2+ ATPases (Frieden et al. 2005). 
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However, given the optical resolution of confocal microscopy (at best, ~0.5 μm 
along the z-axis), this value may be overestimated and include also mitochondria 
that are in proximity but not really associated to PM. Indeed, in another study per-
formed in RBL-2H3 and H9c2 cells, just a few mitochondria-PM contact points 
were observed, and a large fraction of peri-PM mitochondria was found to lack a 
direct contact with the PM (Csordas et al. 2010). Often, an interleaving ER-stack 
was observed to be located between PM and mitochondria, hindering a direct asso-
ciation between them (Csordas et al. 2010). Moreover, it has been shown that, upon 
Drp1/Fis1 overexpression-induced mitochondrial fragmentation, the majority of 
mitochondria loose the co-localization with the PM, suggesting that just few tether-
ing points between the two structures may exist (Frieden et al. 2005).

The molecular nature of the junctions between mitochondria and the PM is mys-
terious. Recently, by employing a proteomic approach in murine liver, it has been 
reported that the connexin protein Cx32, enriched at gap junctions, but retrieved 
also in the IMM, physically interacts with the OMM resident fraction of sydero-
flexin- 1 (SFXN-1), thus suggesting a putative role for the Cx32-SFXN1 axis as a 
PM-mitochondria tether (Fowler et al. 2013). In yeast, the interaction between the 
PM protein Num1 (Klecker et  al. 2013), the OMM-associated adaptor protein 
Mdm36 (Lackner et al. 2013), and still unknown additional partners has been dem-
onstrated to be important for the association of mitochondria with the cell cortex 
and for the retention of part of them in the mother cell after cell division (reviewed 
in Klecker et al. 2014). Thus, PM-mitochondria contacts may be essential for the 
partitioning of mitochondria between the mother cell and the bud.

Recently, different types of contact have been also described between mitochon-
dria and other cellular organelles, such as peroxisomes, through the binding of the 
peroxisomal protein Pex11 and the ERMES subunit Mdm34  in yeast (Mattiazzi 
Usaj et al. 2015), and melanosomes, through undefined Mfn2-dependent molecular 
tether structures (Daniele et  al. 2014) (see also below). Moreover, tight contacts 
(vCLAMPs, ~10 nm the distance between the opposing membranes and ~100 nm 
the length of the juxtaposition) have been reported between vacuoles and mitochon-
dria in yeast (Elbaz-Alon et al. 2014). These contacts depend on the vacuolar pro-
teins Vps39 and the Rab GTPase Ypt7 and have a role in lipid metabolism/exchange 
between these organelles (see below).

1.4  Mitochondria Inter-organelle Contacts: Not Only Matter 
of Ca2+ Signaling

1.4.1  Lipid Synthesis and Trafficking

The maintenance of the lipid composition of cellular membranes involves a tight 
communication between organelles (Lebiedzinska et  al. 2009). The more exten-
sively studied, and probably the more important interorganellar interaction for this 
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function, is between mitochondria and the ER. Indeed, lipid transfer is one of the 
most prominent feature of ER-mitochondria contact domains, even though the 
underlying molecular mechanisms are mostly unknown (Murley and Nunnari 2016).

The ER is the master organelle for lipid synthesis. Nevertheless, the specific 
domains associated to mitochondria (MAMs) have been shown to be enriched, com-
pared to the bulk ER membranes, in enzymes involved in lipid metabolism, such as 
membrane-anchoring proteins, cholesterol metabolism, and triglycerides/phospho-
lipids synthesis enzymes, including the two phosphatidylserine (PS) synthases 
(Stone and Vance 2000). Interestingly, certain phospholipids synthetic pathways 
require enzymes that are located at both the ER and the mitochondria: for example, 
biosynthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) fol-
lows a complete circuit, starting from PS synthesis at the ER side of MAM by PS 
synthase (Zborowski et al. 1983; Stone and Vance 2000) to its decarboxylation into 
PE at the IMM and back to the ER for conversion into PC (Vance 1990; Voelker 
2000; Osman et al. 2011).

Beyond synthesis, there is a bidirectional and extensive lipid exchange between 
membranes of the two organelles, although the factors involved in lipid transport 
remain elusive (Rowland and Voeltz 2012). PC is the most abundant mitochondrial 
phospholipid, but it is synthesized only in elements of the ER. PS and PC must then be 
imported from the ER to the mitochondria, through yet uncharacterized mechanisms 
but likely involving ER membranes and OMM close juxtapositions (Vance 2014).

The importance of mitochondria-ER lipid exchanges is also illustrated by the fact 
that the precursor for the mitochondrial synthesis of cardiolipin, the phosphatidic 
acid, comes from the ER, through a yet unknown mechanism (Vance 2014). 
Moreover, sterols and sphingolipids are minor but potentially functionally signifi-
cant constituents of mitochondrial membranes. MAMs have been reported to be 
enriched in cholesterol, compared to the bulk ER, and studies have suggested that 
depletion of cholesterol from MAMs promotes the association of the two organelles 
(Fujimoto et al. 2012). Thus, mitochondria-ER contacts could contain microdomains 
that are enriched in cholesterol and gangliosides, modified sphingolipids, similarly 
to the detergent-resistant lipid rafts at the PM (Hayashi and Fujimoto 2010). 
Interestingly, in yeast, sterols have been suggested to be directly transported from the 
ER to the mitochondria through Ltc1 (also known as Lam6), an ER-located sterol 
transporter enriched in MAMs (Murley et al. 2015) which interacts with the ERMES 
complex (Gatta et al. 2015). Finally, ceramides, like other sphingolipids, constitute a 
quantitatively minor, but functionally significant, constituent of mitochondria, since 
they can induce OMM permeabilization-mediated apoptosis. Interestingly, cerami-
des synthesis has been shown to occur at MAMs (Stiban et al. 2008).

Even though the interplay between mitochondria and ER seems undeniable in 
the maintenance of cellular lipid homeostasis, a clear identification of molecular 
actors implicated in the process in mammalian cells is still missing. Insights for 
molecular mechanisms come almost exclusively from yeast. Indeed, an exciting 
clue arised from the identification in yeast of the members of the ERMES com-
plex (see above) as highly hydrophobic proteins involved in lipid trafficking 
(Kopec et al. 2010). More precisely, recent studies showed that synaptotagmin-like 
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mitochondrial lipid-binding protein (SMP) domains, present in the ERMES 
 complex, are able to assemble in heterotetramer domains to form tubular struc-
tures, as hydrophobic tunnels for lipid transfer (AhYoung et al. 2015). Nevertheless, 
the fact that these SMP domains display a strong preference for PC (AhYoung 
et al. 2015) suggests that other glycerol-phospholipids transfer might be mediated 
by different parts of the ERMES complex or by other molecules (Murley and 
Nunnari 2016). Evidence has pointed toward a possible implication of some yeast 
members of the oxysterol- binding homology (Osh) protein family that display 
high affinity for PS and are crucial for PS homeostasis (Maeda et al. 2013), as well 
as for the ER membrane complex (EMC) proteins (Lahiri et al. 2014), for increas-
ing the rate of transfer of PS from the ER to mitochondria. All these elements 
suggest that defining the molecular mechanism of lipid transfer between ER and 
mitochondria could imply the discovery of mammalian homologues of ERMES to 
allow phospholipids transfer between organelles.

Recent studies, however, have provided the first possible molecular identity in a 
different protein implicated in ER-mitochondria steroid transfer. Indeed, the trans-
locator protein (TSPO), located in the OMM, is implicated in the import and pro-
cessing of steroids into mitochondria (Flis and Daum 2013), and many clues point 
toward a possible presence of TSPO in MAMs, particularly through its interaction 
with VDAC (Guilarte et al. 2016).

The ER is not the only partner with which mitochondria interact to maintain cel-
lular lipid homeostasis. Indeed, experimental disruption of ERMES has been shown 
to be compensated by the expansion of mitochondrial contacts with vacuoles/lyso-
somes, called vacuolar and mitochondrial patches (vCLAMPs), to maintain lipid 
homeostasis, and vice versa. Moreover, the molecular ratio between ERMES and 
vCLAMP components in yeast is dependent on the metabolic state of the cell. Ltc1 
(see above) could also be expressed at vCLAMPs, in conditions of expansion, and 
is necessary for the compensation of ERMES loss (Honscher et  al. 2014 and 
reviewed in Murley and Nunnari 2016).

Peroxisomes have been also shown to interact with mitochondria (see also 
below). Interestingly, in yeast, they make contacts at sites of mitochondria-ER jux-
tapositions, through the interaction between the peroxisomal protein Pex11 and the 
ERMES subunit Mdm34 (Mattiazzi Usaj et al. 2015). Interestingly, in these areas, 
the mitochondrial matrix enzyme PDH, responsible for the production of  acetyl- CoA 
(see above), is also always present. Thus, acetyl-coA, which is a metabolite at the 
crossroad between glucose and lipids metabolism, is produced at a cellular hub of 
organelles’ interactions (Cohen et al. 2014). These observations could lead to excit-
ing speculations about a nutrient-sensing system based on the distribution of mito-
chondria/ER/vacuoles and peroxisome contacts, as well as on lipid transporters 
composition, to adapt lipid homeostasis and metabolism to cellular environment 
(Murley and Nunnari 2016).

It is important to underlie, however, that even if close contacts have the strongest 
relevance in inter-organelle lipid trafficking, other mechanisms might exist. In par-
ticular, soluble cytosolic lipid transfer proteins have been identified, especially for 
PC and PI (Vance 2015).

R. Filadi et al.



23

1.4.2  Autophagy

The process of autophagy is considerably dependent on intracellular organelles’ 
membranes and their possible interactions (Yang and Klionsky 2009).

The major intracellular source from which the initial isolation membrane (also 
known as “phagophore”) can form has been reported to be the ER, both in yeast 
(Suzuki and Ohsumi 2010) and mammals (Axe et al. 2008; Hayashi-Nishino et al. 
2009; Itakura and Mizushima 2010; Matsunaga et al. 2010). More recently, multiple 
pieces of evidence have been reported for mitochondria-ER contact sites as sources 
of membranes for autophagosome biogenesis. Depletion of ER-mitochondria teth-
ering regulators, such as Mfn2, has been shown to impair autophagosome formation 
(Hailey et al. 2010).

In addition, a milestone following study (Hamasaki et al. 2013) clearly demon-
strated that autophagosomes can form at mitochondria-ER contact sites: not only 
key components of the autophagic process (Atg5, Atg14, Beclin-1, Vps15, Vps34) 
were found to be localized in MAMs under starved conditions (and this association 
at mitochondria-ER contact sites was stable throughout the autophagosomes forma-
tion process) but also alterations of this association led to decreased autophagy. 
Moreover, it has been shown that MAM raft-like microdomains, containing the raft 
marker ganglioside-3 (GD3), were pivotal in autophagosome formation: under 
starved conditions, calnexin, a Ca2+-binding chaperone protein enriched in MAMs, 
strongly associates with GD3 and crucial upstream regulators of autophagy, such as 
AMBRA1 and WIPI1, allowing autophagy to proceed (Garofalo et al. 2016). The 
reduction in GD3 levels, by knocking down a member of the glycosyltransferase 
family responsible for its synthesis, led to impaired starvation-induced association 
of core complex molecules at MAMs and defective autophagy, highlighting the key 
role played by the MAM platform in driving the process.

Finally, by scanning electron microscopy and electron tomography, a morpho-
logical analysis confirmed that phagophores can assemble at the mitochondria-ER 
contact sites (Biazik et al. 2015). This observation, together with the finding that 
lipids transported from the ER to the mitochondria are subsequently translocated 
into autophagosomes under starved conditions (Hailey et al. 2010), strongly indi-
cates mitochondria-ER communications as fundamental for resupplying lipids to 
mitochondria to compensate for their transport into autophagosomes.

Very recently, FUNDC1, the integral OMM protein that functions as LC3 recep-
tor during hypoxia-induced mitophagy (Liu et  al. 2012), has been found to be 
enriched in MAMs and interact with calnexin, DRP1 and OPA1, mediating either 
mitochondria elongation in response to hypoxic stimuli or mitochondria fragmenta-
tion and mitophagy, depending on its phosphorylation pattern (Wu et  al. 2016). 
Thus, FUNDC1, localized at mitochondria-ER contact sites, functions as an adaptor 
protein coordinating mitochondrial dynamics and quality control in response to dif-
ferent signaling pathways and mitochondrial stresses.
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1.4.3  The Unfolded Protein Response (UPR)

Several physiological and pathological stress conditions can alter ER homeostasis, 
decreasing the amount of Ca2+ accumulated within the ER or compromising the 
folding ER capacity, leading to accumulation of unfolded proteins in the ER lumen, 
and causing the ER stress response known as “unfolded proteins response” (UPR) 
(Verfaillie et al. 2013).

Within the cell, the mitochondria-ER axis is a critical player in the complex 
modulation of the UPR; indeed, both organelles have a key role during UPR, and 
they are both modulated by it in their functionality and interrelationship. For exam-
ple, the early phase of UPR is linked to changes in ER morphology and redistribu-
tion of mitochondria, which move toward the ER structure, strengthening 
ER-mitochondria contact sites. The increased ER-mitochondria interaction sus-
tained a higher Ca2+ transfer between them, rising mitochondrial metabolism, oxy-
gen consumption, and ATP production. The outcome can help the cell to rescue the 
stress state, supplying ATP to chaperone proteins, such as Bip, involved during UPR 
in the folding process (Bravo et al. 2011).

As mentioned above, if, however, the stress and the damage are too severe, the 
pro-survival pathway, mediated by the three sensors, turns into a pro-death response 
through the regulation of pro-apoptotic proteins. In this case, the stronger 
ER-mitochondria interaction favors a deregulated Ca2+ transfer, leading to mito-
chondrial Ca2+ overload, mPTP opening, and apoptotic protein activation. In par-
ticular, among the proteins that can trigger apoptosis, the truncated form of SERCA 
(S1T) has been shown to be involved in the late ER stress response: highly expressed 
during ER stress by the PERK-ATF4 pathway, the truncated pump increases 
ER-mitochondria tethering and blocks mitochondrial movements, causing an 
increased ER-mitochondrial Ca2+ transfer, mitochondrial Ca2+ overload, and eventu-
ally cell death (Chami et al. 2008).

1.4.4  Organelle Activity and Biogenesis

A peculiar molecular and functional relationship between mitochondria and peroxi-
somes has been known for a long time. Indeed, these organelles not only share some 
components of their fission machinery (such as Drp1, Fis1, and Mff in mammals 
and Dnm1 and Fis1 in yeast) but also cooperate in some metabolic pathways, such 
as β-oxidation of fatty acids (reviewed in Schrader et al. 2015). Moreover, the mito-
chondrial biogenesis transcriptional co-activator PGC-1α has been found to directly 
increase peroxisomes number (Bagattin et al. 2010).

Mitochondria and peroxisomes have been reported to be closely associated in 
ultrastructural studies in mammalian cells (Hicks and Fahimi 1977), and multiple 
evidences indicate physical connections between mitochondria and peroxisomes in 
yeast (Rosenberger et al. 2009), although their contribution to metabolite exchange 
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between the two organelles is unclear. Instead, mitochondrion-derived vesicles 
(MDVs) were suggested to allow the latter feature (Neuspiel et al. 2008) and appear, 
together with vesicles derived from the ER, to be important for peroxisomal biogen-
esis (Mohanty and McBride 2013). As to the functions of mitochondria- peroxisomes 
contacts, they have been suggested to be relevant for peroxisome fission in yeast 
(Mao et al. 2014), as well as for the innate immune response against viral and bacte-
rial infections (reviewed in Schrader et al. 2015 and see also Horner et al. 2011, 
2015) and for redox homeostasis (Nordgren and Fransen 2014) (reviewed in 
Schrader et al. 2015). Moreover, the same molecular fission complex (see above) is 
reported to be recruited during the autophagic degradation of the two organelles, 
mitophagy (Mao et  al. 2013), and pexophagy (Mao et  al. 2014), respectively. 
Moreover, peroxisome division, occurring early in the process, has been shown to 
take place at mitochondria-peroxisome contact sites (Mao et al. 2014), highlighting 
a functional interplay of the two organelles in autophagy.

Mitochondria make also contacts with other organelles, although the significance 
and molecular characterization of these sites are not defined. For example, in yeast 
the acidic vacuole is functionally linked to mitochondria, and any dysregulation of 
each organelle is negatively reflected to the other (Hughes and Gottschling 2012). 
In mammals, a vesicular transport pathway has been described from mitochondria 
to lysosomes, as an early response to oxidative stress, independent from mitophagy 
and preventing mitochondrial dysfunctionality (Soubannier et al. 2012).

Finally, it has been recently demonstrated that ~7% of melanosomes are in close 
contact with mitochondria, thanks to the presence of proteinaceous bridges similar 
to those observed in ER-mitochondria regions of apposition (Daniele et al. 2014). 
This association has been reported to be important for melanosomes biogenesis, 
likely through a local ATP supply from mitochondria to melanosomes or through an 
exchange of other metabolites, such as Ca2+. Interestingly, though its abundance in 
the sites of interorganellar apposition is strongly reduced compared to the bulk 
OMM (as revealed by immunogold analysis), Mfn2 has been suggested to be impor-
tant for these contacts, because its downregulation decreases their number (Daniele 
et al. 2014).

1.4.5  Other Cell Functions

1.4.5.1  Mitochondria Inheritance

In yeast, it has been demonstrated that active nucleoids (the nucleoprotein structures 
responsible for mtDNA inheritance) are associated with a protein complex that 
spans the OMM and the IMM (Meeusen and Nunnari 2003). Components of the 
ERMES complex (involved in mitochondria-ER contacts in yeast, see above) have 
been observed to be spatially associated to active nucleoids (Murley et al. 2013). 
Moreover, Mmr1, an OMM protein specific of bud’s but not of mother cell’s mito-
chondria, physically interacts with Myo2 (Itoh et al. 2004), a class V myosin that 
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mediates the transport of mitochondria to the bud; of note, Mmr1 has been observed 
to be enriched at mitochondria-ER contact sites (Swayne et al. 2011), thus suggest-
ing that these regions of contact may be important for mitochondria inheritance.

Very recently, in mammalian cells, it has been reported that mtDNA synthesis is 
spatially associated to a subset of mitochondria-ER contacts involved in mitochon-
drial division (Lewis et al. 2016). Importantly, mitochondria-ER tether formation 
precedes and is necessary (but not sufficient) for mtDNA replication and mitochon-
drial division, thus playing a crucial role in the proper inheritance of mtDNA 
between dividing mitochondria. It is tempting to speculate that the existence of a 
contact with the ER creates a specialized platform on OMM and IMM, character-
ized by a specific lipid/protein composition (lipid rafts-like), important for the suc-
cessive recruitment of proteins involved in specific activities, such as mtDNA 
replication and mitochondrial division.

1.4.5.2  Inflammation and Antiviral Response

The activation of innate immune response is another pathway in which the mito-
chondria- ER axis seems to be actively involved (reviewed in Marchi et al. 2014; 
van Vliet et al. 2014; Schrader et al. 2015). The cytosolic pathogen receptor RIG-
1, responsible for the production of pro-inflammatory cytokines, has been demon-
strated to be recruited for proper assembly by the OMM adaptor protein MAVS 
(mitochondria antiviral signaling protein; Belgnaoui et al. 2011), which has been 
recently reported to be specifically located at MAMs, where it regulates mito-
chondrial and peroxisomal signaling events during viral infections (Horner et al. 
2011). A proteomic analysis revealed, in these latter conditions, a dynamic change 
in MAM protein composition, with an increase in MAVS interactors (Horner 
et al. 2015).

The inflammasome NOD-like receptor NLRP3 is a multiprotein complex that 
works like a sensor of damage (intracellular pattern-recognition receptors that 
recognize pathogen-associated molecular patterns, PAMPs) activating the pro- 
inflammatory response through specific pathways. Normally located at ER mem-
branes, after mitochondrial-ROS-induced inflammasome activation, NLRP3 
redistributes to MAMs (Zhou et al. 2011), thus highlighting the importance of this 
cell sub-compartment in ROS signaling and activation of inflammatory response. 
Importantly, the activity of VDACs, which are OMM proteins and important regu-
lators of mitochondrial metabolic activity (see Chaps. 7, 8, 9, 10, 11, and 12 for 
extensive descriptions), is crucial for NLRP3 activation. Moreover, in cystic 
fibrosis cell models, it has been recently shown that MCU-dependent mitochon-
drial Ca2+ uptake integrates pro-inflammatory signals initiated by pathogen-asso-
ciated molecules and relays the information to NLRP3 (Rimessi et  al. 2015), 
acting as a synergic stress stimulus in triggering exacerbated inflammatory 
response. Thus, not only mitochondria play a central role in the orchestration of 
the inflammatory response but also constitute the signal-integrating organelle for 
inflammasome activation.
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1.4.5.3  Mitochondria Dynamics and Transport

Mitochondria are dynamic organelles, continuously undergoing fusion and fission. 
These opposite processes maintain the shape, size, and number of mitochondria as 
well as their physiological functionality (Youle and van der Bliek 2012). Numerous 
studies have suggested a role for mitochondria-ER interactions in mitochondrial 
fission and fusion (see Marchi et al. 2014 for a recent review), through mechanisms 
involving physical and functional (Ca2+) coupling. Moreover, many of the proteins 
involved in MAM structural integrity are mitochondria dynamics-related proteins.

Mitochondrial fission, in particular, seems to be highly dependent on ER proxim-
ity. The fragmentation process relies on the recruitment, by specific receptors at the 
mitochondrial surface, of dynamin-related proteins, forming helical oligomers that 
wrap around the organelles and divide them in a GTP-dependent manner (Klecker 
et al. 2014). Interestingly, these fission complexes assemble at specific sites where 
ER tubules circumscribe mitochondria to form constriction sites both in yeast and 
metazoan cells (Smirnova et al. 2001). In these latter, mitochondrial division medi-
ated by ER constrictions involves actin polymerization to tighten the noose formed 
by Drp1, through the action of the ER protein inverted formin-2 (INF2), a promoter 
of actin polymerization and depolarization (Prudent and McBride 2016). Moreover, 
the mitochondrial protein Miro1, at the OMM, has been shown to sense [Ca2+], stop 
mitochondria motility, and induce fission in a Drp1-dependent manner (Saotome 
et al. 2008). Interestingly, its yeast homolog Gem1, which presents similar features 
(Frederick et al. 2004), interacts with the MAM complex ERMES at sites of mito-
chondrial division (Nguyen et al. 2012). This interaction is relying on the Gem1 
EF-hand Ca2+-binding domain, suggesting that the association of the protein with 
ERMES could be Ca2+ dependent (Kornmann et al. 2011). Moreover, reduced mito-
chondria- ER interactions have been associated with mitochondrial fragmentation 
during glucose sensing in the liver (Theurey et al. 2016).

Apart from fission, mitochondria-ER interactions have been shown to be crucial 
for fusion processes as well. The main actors in the control of mitochondrial fusion 
are Mfn1 and Mfn2, two homologous GTPase proteins present, both, at OMM, but, 
the second one, also at ER membranes. In particular, Mfn2 coordinates the 
 interactions between different mitochondria, leading to the stabilization of the 
whole mitochondrial network, but is also crucial for tuning their tethering to the ER, 
modulating MAM formation (see above) (Koshiba et al. 2004).

Only mitochondria-ER contacts have been clearly demonstrated to have a central 
role, with the described mechanisms, in mitochondrial shaping events. Nevertheless, 
clues suggest that mitochondria-peroxisome interactions might also play a part. For 
instance, induction of oxidative stress by expression of KillerRed in peroxisomes 
induces mitochondrial fragmentation, even though only functional interplay through 
ROS has been implicated in the phenomenon (Ivashchenko et al. 2011). Interestingly, 
both organelles undergo similar dynamics processes and share components of their 
division machinery, such as Drp1 and Fis1 (Schrader et al. 2016) (see above).

To this day, the only link observed between mitochondrial dynamics and mito-
chondria- PM interaction is the observation that organelles’ fragmentation mediated 
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by Fis1 or Drp1 overexpression is associated with their decreased interactions with 
the cell membrane. However, it is more likely that this element underlines the pos-
sibility that a small number of anchor points exist at the mitochondria-PM interface 
rather than a real functional interplay between mitochondrial dynamics and PM 
(Frieden et al. 2005).

1.5  Mitochondria-ER Contacts and Diseases

As detailed above, the communication between mitochondria and ER regulates a 
multitude of physiological processes, ranging from intracellular Ca2+ homeostasis 
to lipid metabolism and control of cell death. Thus, the emergence of alterations in 
organelles’ physical and functional tethering as a common hallmark in different 
pathologies, such as neurodegenerative diseases, diabetes, obesity, and cancer is not 
surprising. A comprehensive and detailed review of all these findings is far away 
from the scope of the present chapter. Here, we limit ourselves to a brief summary 
of the main studies involving alterations in the mitochondria-ER axis as a key event 
in three neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and amyotrophic lateral sclerosis (ALS). The interested reader is also referred 
to additional reviews on this topic (Cali et al. 2013b).

1.5.1  Alzheimer’s Disease

In Alzheimer’s disease (AD), the pathogenicity of the altered production/accumu-
lation of amyloid β peptide (Aβ) has been well established (Goedert and Spillantini 
2006). Additionally, however, AD patients display early intracellular alterations 
(such as those in Ca2+ homeostasis, lipid metabolism, axonal transport, ROS pro-
duction, autophagy, and mitochondrial dynamics) that have been much less inves-
tigated as potential therapeutic targets (Agostini and Fasolato 2016). Importantly, 
many of these altered processes are known to take place at MAMs. Furthermore, 
Presenilin 1 and 2 (PS1 and PS2), the two alternative core proteins of the γ-secretase 
complex responsible for Aβ production, mutated in the familial forms of the dis-
ease, as well as γ-secretase activity, have also been found to be enriched in MAMs 
(Area- Gomez et al. 2009; Schreiner et al. 2015). In addition, it has been originally 
demonstrated that wt PS2 and, more potently, familial AD (FAD)-PS2 mutants, but 
not PS1 neither FAD-PS1, favor ER-mitochondrial Ca2+ transfer by increasing the 
physical association between the two organelles (Zampese et al. 2011). Though an 
increased interorganellar apposition in the presence of FAD-PS2 mutations has 
been later confirmed by others in human fibroblasts from FAD patients (Area- 
Gomez et al. 2012), an increased tethering with an impact on phospholipids and 
cholesterol metabolism has been additionally observed in fibroblasts from 
FAD-PS1 and sporadic AD patients (Area-Gomez et  al. 2012). In this paper, 
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however, the authors reported that both endogenous PS1 and PS2 negatively affect 
ER-mitochondria coupling, while their FAD mutants favor the apposition. It is, 
however, unclear how sporadic AD cases may converge on MAMs alterations sim-
ilarly to those mechanistically caused by PSs mutations, as it has been proposed. 
Moreover, in another independent study, FAD-PS1 expression in a neuronal cell 
model was found to be associated to a decreased, and not to an increased, 
ER-mitochondria physical and functional coupling (Sepulveda-Falla et al. 2014).

Very recently, we confirmed that only PS2 increases ER-mitochondria commu-
nications, by binding and sequestering Mfn2 (Filadi et al. 2016) (see also above). It 
is tempting to speculate that, while PS2 directly affect ER-mitochondria tethering, 
in the cases of FAD-PS1 and sporadic AD, other pathways may indirectly, and over 
a longer period of time, converge on ER-mitochondria association, though the 
molecular mechanism is not clear. On this line, an altered coupling between these 
two organelles has been reported in different AD models (Kipanyula et al. 2012; 
Hedskog et al. 2013), and an acute Aβ oligomer exposure has been demonstrated to 
increase ER-mitochondria Ca2+ transfer (Hedskog et al. 2013). Finally, it has been 
observed that increasing ER-mitochondria contacts (through Mfn2 down- regulation) 
deeply affects the process of Aβ production, by altering the maturation of γ-secretase 
(Leal et al. 2016), further suggesting that the ER-mitochondria platform may repre-
sent a novel target for AD pharmacological research.

1.5.1.1  Parkinson’s Disease

The association between Parkinson’s disease (PD) and mitochondrial alterations is 
particularly immediate. Indeed, some of the genes mutated in the familial form of 
the disease encode for proteins that are targeted or are transiently associated, to 
mitochondria, such as PINK-1 and Parkin (reviewed in Cali et al. 2011). As to the 
contacts with the ER, overexpression of wt Parkin has been reported to favor 
ER-mitochondria physical and functional coupling, increasing mitochondrial Ca2+ 
uptake and sustaining ATP production, a function exerted also by endogenous 
Parkin, whose downregulation results in mitochondrial fragmentation (Cali et al. 
2013). However, a recent report described an increased ER-mitochondria apposition 
in fibroblasts from Parkin (PARK-2) KO mice, as well as from PD patients harbor-
ing PARK-2 mutations (Gautier et al. 2016). This increase has been associated to 
higher levels of the Parkin target Mfn2, proposed as an ER-mitochondria tether. 
However, the complete list of the possible Parkin targets still lacks, and thus whether 
the effects of Parkin-KO on the tethering depend or not from its effects on Mfn2 
levels is not clear. Overexpression of wt DJ-1 (another protein whose mutations are 
associated with PD familial forms) has been also shown to increase ER-mitochondria 
communication, by counteracting the negative effects of the tumor suppressor pro-
tein p53 on this parameter (Ottolini et al. 2013). Interestingly, a small fraction of 
DJ-1 has been recently demonstrated to translocate into mitochondrial matrix upon 
nutrient deprivation, a process important to sustain ATP levels, which is lost in the 
presence of pathogenic DJ-1 mutants (Cali et al. 2015). α-Synuclein has been also 
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reported to be involved in the modulation of ER-mitochondrial physical tethering, 
enhancing mitochondrial Ca2+ uptake (Cali et al. 2012), and has been recently dem-
onstrated to be localized at MAMs (Guardia-Laguarta et al. 2014), with its disease- 
linked mutants less associated to MAMs and resulting in mitochondria-ER 
uncoupling. Finally, in drosophila PINK1/Parkin mutants, it has been found that 
defective mitochondria activate the PERK branch of UPR, a neurotoxic process that 
seems to be potentially modulated by Mfn2 (Celardo et al. 2016).

1.5.1.2  Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron 
disease and is clinically and genetically associated to frontotemporal dementia 
(FTD) (Ling et al. 2013). In the nucleus and cytosol of neurons and glia of patients, 
inclusions of TDP-43-, FUS-, and C9ORF72-derived protein can be retrieved. 
Importantly, mutations in the genes encoding for these proteins are responsible for 
~50% of the familial forms of the disease (Ling et al. 2013). Recently, increasing 
evidence has been provided for a key role of the mitochondria-ER axis in ALS/FTD 
onset/progression (reviewed in Manfredi and Kawamata 2016). In particular, over-
expression of both wt and mutated TDP-43 decreases ER-mitochondria contacts 
and Ca2+ transfer (Stoica et al. 2014), by disrupting the VAPB-PTPIP51 tethering 
complex through activation of GSK-3β (see above). Similarly, FUS, wt, and ALS- 
linked mutant overexpression has been reported to disrupt ER-mitochondria juxta-
position, Ca2+ shuttling, and ATP production (Stoica et al. 2016), by affecting, in a 
GSK-3β-dependent manner, the VAPB-PTPIP51 interaction. Importantly, VAPB 
mutations are responsible for some familial forms of ALS type-8, and VAPB-P56S 
expression increases mitochondrial Ca2+ uptake after its release from the ER (De 
Vos et  al. 2012). In mouse embryonic motor neurons, overexpression of G93A 
hSOD1, as an ALS animal model, has been shown to affect ER and mitochondrial 
Ca2+ homeostasis (Lautenschlager et al. 2013). Recently, the loss of the MAM pro-
tein SIGMA1-R (a condition associated to some familial forms of ALS/FTD) has 
been reported to impair mitochondria-ER crosstalk (Bernard-Marissal et al. 2015), 
and, similarly, SIGMA1-R loss-of-function mutations (associated to distal heredi-
tary motor neuropathies, dHMNs) have been shown to disrupt this interorganellar 
communication (Gregianin et al. 2016). Thus, different studies convincingly sug-
gested that ER-mitochondria axis could be an interesting platform to exploit as a 
therapeutic target in ALS/FTD.
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Chapter 2
Molecular Players of Mitochondrial Calcium 
Signaling: Similarities and Different Aspects 
in Various Organisms

Vanessa Checchetto, Diego De Stefani, Anna Raffaello, Rosario Rizzuto, 
and Ildiko Szabo

2.1  Introduction

Ca2+ acts as a second messenger in every cell type, controlling processes as diverse 
as secretion, cell death, and survival. The versatile and universal nature of calcium 
as intracellular messenger is guaranteed by a cell-specific Ca2+ signaling toolkit: 
several components (e.g., Ca2+ channels, pumps, and Ca2+-binding proteins) can 
cooperate and generate a wide range of signals, where changes in intracellular Ca2+ 
concentration ([Ca2+]i) vary in both spatial and temporal patterns. These specific 
patterns can then be decoded into specific cellular events (Berridge et  al. 2003). 
Compartmentalization of [Ca2+] dynamics in the different organelles represents a 
further level of complexity. Mitochondria are thought to play an integral part that 
goes beyond acting as passive supporters by providing the ATP required for cellular 
readjustment of [Ca2+]i following stimulation. These organelles are able to quickly 
and transiently accumulate Ca2+ upon cytosolic transients, and thus, they can a pri-
ori contribute to shaping cytosolic Ca2+ transients.

Only during the last decade, significant advances have been achieved regarding 
the identification of the molecular players of the mitochondrial Ca2+-handling 
machinery. Here, we summarize our current knowledge on the main player, i.e., the 

V. Checchetto • I. Szabo (*) 
Department of Biology and CNR Institute of Neurosciences,  
University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
e-mail: ildi@civ.bio.unipd.it 

D. De Stefani • A. Raffaello • R. Rizzuto 
Department of Biomedical Sciences, University of Padova,  
Viale G. Colombo 3, 35121 Padova, Italy

mailto:ildi@civ.bio.unipd.it


42

MCU complex (MCUC) in different organisms including protozoa (Trypanosoma), 
fungi, plants, and animals. In addition, the physiology of mitochondrial calcium 
homeostasis will be discussed also in light of what we learned from studies in 
organisms where MCU complex components have been genetically targeted.

2.2  The Role of Mitochondrial Calcium Within the Organelle

During the last three decades, considerable experimental work has been carried out 
using either pharmacological or indirect genetic tools to alter mitochondrial calcium 
homeostasis and to dissect its pathophysiological role. Ca2+ inside mitochondria 
plays a pleiotropic role, with different cellular outcomes that depend on the investi-
gated cell type, the metabolic state, and the concomitant presence of other stress 
signals. Not only calcium plays a regulatory role within the organelle itself ranging 
from the regulation of ATP production to the release of apoptotic cofactors with 
consequent cell death, but in most organisms, mitochondrial calcium can impor-
tantly impact cation homeostasis, both locally and globally (Rizzuto et al. 2012).

In respiring mitochondria, the major component of the electrochemical proton 
gradient (ΔμH+), the membrane potential difference (ΔΨ), represents a very large 
driving force for Ca2+ accumulation. The inner mitochondrial membrane (IMM) is 
impermeable for cations (including Ca2+), and passage strictly requires channels/
transporters. Early Ca2+ uptake studies with mammalian mitochondria revealed that 
transport of calcium required respiration (Vasington and Murphy 1962; Deluca and 
Engstrom 1961) and was accompanied by Pi transport (Greenawalt et al. 1964). The 
underlying transporter was proposed to be an electrophoretic Ca2+ uniporter that 
does not require ATP hydrolysis but is driven by the steep electrochemical gradient 
across the IMM (Rottenberg and Scarpa 1974). Similarly, studies using isolated 
mitochondria from different plant species evidenced that these organelles take up 
Ca2+ (Akerman and Moore 1983; Dieter and Marme 1980). Uptake strictly required 
energization (Dieter and Marme 1980). Ca2+ import in most cases was shown to 
require inorganic phosphate (Pi) (Hodges and Hanson 1965; Chen and Lehninger 
1973), leading to a hypothesis that Ca2+ is imported by a symport mechanism 
together with Pi (Silva et al. 1992; Day et al. 1978). However, for example, in some 
studies, isolated plant mitochondria were not found to accumulate  calcium (Moore 
and Bonner 1977; Martins and Vercesi 1985), casting doubt on the existence of a 
general mechanism of calcium handling by these organelles in plants. In mammals, 
once mitochondrial Ca2+ uptake could be monitored directly in intact cells using 
mitochondria-targeted aequorin as calcium-sensing probe (Rizzuto et al. 1992), it 
became evident that Ca2+ concentrations in mitochondria can reach up to hundred 
μM in some cell types. The speed and amplitude of Ca2+ uptake was shown to 
exceed the values that had been predicted from classical bioenergetic experiments 
in isolated mitochondria. Subsequent work in mammalian cells suggested an inter-
action of mitochondria with microdomains of high Ca2+ concentrations generated 
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by localized release from the ER and the extracellular space, allowing highly effi-
cient uptake (see, e.g., Rizzuto et al. (2012) also for historical overview).

In mammals, Ca2+ elevations in the mitochondrial matrix stimulate respiration 
and ATP synthesis to cover temporarily high-energy needs of cells, e.g. (Denton 
2009). Increased biosynthesis rates of ATP rely on the activation of mitochondrial 
dehydrogenases by Ca2+ (McCormack et  al. 1990). In addition, electron transfer 
chain (ETC) complexes as well as the ATP synthase are positively regulated by 
Ca2+. Among the dehydrogenases, pyruvate dehydrogenase (PDH) (Denton et  al. 
1972), NAD-isocitrate dehydrogenase (NAD-ICDH) (Denton et  al. 1978), and 
α-ketoglutarate (oxoglutarate) dehydrogenase (McCormack and Denton 1979) are 
activated by physiologically relevant Ca2+ concentrations (between 100  nM and 
1 μM) in mitochondria isolated from mammalian tissues (Denton and McCormack 
1980; Denton et al. 1980). The latter two enzymes do not contain any typical Ca2+-
binding motifs, such as EF-hands, but are directly, allosterically, regulated by Ca2+ 
(McCormack et al. 1990). Instead, both in animal and plants, the former enzyme is 
activated through Ca2+-controlled PDH phosphatase: PDH activity is regulated 
through reversible phosphorylation (Holness and Sugden 2003; Tovar-Mendez et al. 
2003) with activity being enhanced through a dephosphorylation step. These events 
in turn increase NADH availability and consequently the electron flow through the 
respiratory chain. In addition to matrix dehydrogenases, aspartate/glutamate 
exchangers of the inner membrane (aralar1, citrin, and the ATP-Mg/Pi carrier 
SCaMC-3) also seem to be regulated by Ca2+ via EF-hand Ca2+-binding sites which 
are exposed to the intermembrane space (Rueda et al. 2015). Direct evidences in 
favor of regulation of metabolism by calcium are multiple: (i) an increased resting 
state level of Ca2+ in the mitochondrial matrix was shown to alter the PDH phos-
phorylation state in cultured cells (Mallilankaraman et al. 2012b) and (ii) an increase 
in mitochondrial and then cytosolic ATP was reported to occur upon cell stimulation 
and to depend on the [Ca2+]mt rise (Jouaville et al. 1995), in order to match ATP 
synthesis to the increased demand of a stimulated cell. However, several findings 
argue against an universal conservation of Ca2+ regulation of mitochondrial metabo-
lism in all organisms: (i) while the activity of TCA cycle enzymes NAD-ICDH and 
α-ketoglutarate dehydrogenase from various vertebrates is increased in the presence 
of Ca2+, their homologs from Escherichia coli, yeast, insect flight muscle, and potato 
are insensitive to calcium (Nichols et al. 1994; McCormack and Denton 1981) and 
(ii) PDH phosphatase is not activated by Ca2+ in vitro or in intact mitochondria in all 
organisms (Miernyk and Randall 1987; Budde et al. 1988).

In addition to the regulation of mitochondrial metabolism, calcium plays an 
important role also in the context of cell death. Indeed, an excessive increase in 
mitochondrial Ca2+ concentration under certain stimuli may be harmful: when a 
certain threshold level is exceeded, it may result in long-lasting opening of the per-
meability transition pore (Bernardi and von Stockum 2012). The general consensus 
is that mitochondrial Ca2+ loading has a permissive role, allowing a variety of toxic 
challenges to cause the release of caspase cofactors from the organelle and thereby 
trigger apoptotic cell death. In turn, alteration of this cellular response has a role in 
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the pathogenesis of human disorders such as neurodegenerative disorders and can-
cer (Bernardi et al. 2015; Szabo and Zoratti 2014). Ca2+ transfer from intracellular 
stores to mitochondria is also emerging as a site of pivotal importance in the 
 regulation of both cell death and cell survival pathways as well as for autophagy (for 
details, see Filadi et al. in this book). Interestingly, a recent work highlights that a 
novel, cardiac mitochondrial cAMP-dependent pathway controls mitochondrial 
Ca2+ entry through the MCUC in order to prevent PTP opening (Wang et al. 2016).

2.3  The Role of Mitochondrial Calcium in Shaping 
the Cytosolic Calcium Signaling

Mitochondria play a pivotal role in shaping cytosolic Ca2+ signals. This has been 
demonstrated experimentally, since mitochondrial Ca2+ buffering was shown to 
influence cellular Ca2+ signals and consequently cell function in many different cell 
types (Rizzuto and Pozzan 2006). Indeed, the observation that mitochondria rapidly 
accumulate Ca2+ upon stimulation allowed to design experiments to prove that these 
organelles contribute to the buffering of either the whole cytoplasm or of specific 
cellular domains. Mitochondria were shown to be able to rapidly remove Ca2+ from 
the mouth of the ER-located Ca2+ release channel inositol trisphosphate receptor 
(IP3R) and hence to modify the total amount of Ca2+ released from intracellular 
stores to the cytosol. Ca2+ released across this channel exerts a feedback regulatory 
action, either activating, inhibitory, or biphasic, depending on the local [Ca2+]. This 
effect is a consequence of the bell-shaped relationship between cytosolic calcium 
concentration ([Ca2+]c) and IP3R opening, where low and high [Ca2+]c inhibit chan-
nel activity, whereas intermediate [Ca2+]c increases cation release (Bezprozvanny 
et al. 1991). Accordingly, removal of Ca2+ from the proximity of IP3Rs on one hand 
reduces the stimulus to opening, and on the other, it relieves Ca2+-dependent inhibi-
tion of open channels, thus promoting Ca2+ release. This was first demonstrated in 
Xenopus oocytes, where mitochondrial energization and the resulting increase in 
mitochondrial Ca2+ uptake was shown to coordinate IP3- induced [Ca2+]c rises into 
single propagating waves of low frequency and high amplitude (Jouaville et  al. 
1995). Regulation of the spatiotemporal patterning of cytosolic Ca2+ waves by mito-
chondria has been observed then in numerous different cell types. Instead, in plants, 
although our current knowledge points to mitochondrial calcium uptake occurring 
in vivo, this event does not seem to correlate with shaping of the cytosolic calcium 
signaling (Wagner et al. 2015).

Mitochondrial Ca2+ buffering could also participate to the local accumulation of 
a large amount of cations in a defined cell region, thanks to the precise positioning 
of the organelles. For example, redistribution of mitochondria to the immunological 
synapse was shown to be necessary to maintain Ca2+ influx across the plasma mem-
brane and for Ca2+-dependent helper T cell activation (Quintana et al. 2007). Further 
work highlighted that calcium-dependent inactivation of the calcium influx- 
mediating ORAI channels was prevented by localizing mitochondria close to ORAI 
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channels. Thus, the redistribution of mitochondria following the formation of 
immunological synapse maximized the efficiency of calcium influx through ORAI 
channels, but it also decreased calcium clearance by the exit pathway (calcium 
ATPase of the plasma membrane), resulting in a more sustained NFAT activity and 
subsequent activation of T cells (Quintana et al. 2011).

Overall, mitochondria appear to be efficient, high capacity Ca2+ buffers that 
shape cytosolic Ca2+ transients by either regulating the properties of Ca2+-releasing 
channels or limiting the wide spreading of [Ca2+]c rises, at least in animals. The 
precise positioning of the organelle is critical for shielding defined cell portions in 
specific cells or for regulating calcium-mediated feedback mechanisms. While these 
statements are in general valid for most mammalian cell types, the role of mitochon-
drial calcium buffering is much less clear in other cell types, for example, in plants 
(Wagner et al. 2016).

2.4  Ca2+ Import into Mitochondria

2.4.1  Calcium Flux Across the Outer Mitochondrial 
Membrane

Similarly, to other small molecules, Ca2+ is thought to freely pass the outer mito-
chondrial membrane (OMM) through VDACs (voltage-dependent anion channels, 
also called porins). VDACs allow flux of metabolites and ions including Ca2+, for 
which mammalian VDAC also possesses binding sites, as demonstrated both in vitro 
and in vivo (Bathori et al. 2006; De Stefani et al. 2012; Gincel et al. 2001; Israelson 
et al. 2007; Rapizzi et al. 2002; Shoshan-Barmatz et al. 2010; Rizzuto et al. 2009). 
In mammals and plants, functionally distinct protein isoforms have been found in 
the OMM (for recent reviews, see Shoshan-Barmatz et al. 2010; Rostovtseva 2012; 
Takahashi and Tateda 2013). VDACs, although defined as anion channels, can con-
duct a substantial flow of Ca2+, as demonstrated both in vitro and in vivo for the 
mammalian protein. The importance of calcium flux across VDACs is highlighted 
by recent studies addressing different aspects. For example, efsevin was shown to 
bind to VDAC2, to potentiate mitochondrial Ca2+ uptake, and to accelerate the trans-
fer of Ca2+ from intracellular stores into mitochondria. In cardiomyocytes, efsevin 
inhibited Ca2+ overload-induced erratic calcium waves, demonstrating that VDAC2- 
dependent mitochondrial Ca2+ uptake plays a critical role in the regulation of car-
diac rhythmicity (Shimizu et al. 2015). Uptake of calcium via VDAC1 seems to be 
required for inhibition of apoptosis by anti-apoptotic proteins. In particular, the 
BH4 domain of Bcl-XL, but not that of Bcl-2, was shown to selectively target 
VDAC1 and to inhibit apoptosis by decreasing VDAC1-mediated Ca2+ uptake into 
the mitochondria (Monaco et al. 2015). Not only uptake of calcium via VDACs have 
profound effect on pathophysiological processes but also its release: recent data 
indicate that mitochondrial calcium, released through VDAC1, triggers Schwann 
cell demyelination via a signaling pathway including ERK1/ERK2, p38, JNK, and 
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c-JUN activation following sciatic nerve injury. Importantly, reduction of mitochon-
drial calcium release, either by VDAC1 silencing or pharmacological inhibition, 
prevented demyelination (Gonzalez et al. 2016).

2.4.2  Calcium Flux Across the Inner Mitochondrial 
Membrane

Mitochondrial calcium uptake mostly occurs via the mitochondrial calcium uni-
porter complex MCUC, but other uptake modes, differing from MCUC-mediated 
Ca2+ uptake in terms of Ca2+ affinity, uptake kinetics, and pharmacological control, 
seem to coexist at least in the mammalian system. Here below, we provide an 
updated overview of the MCUC components and function in different systems and 
briefly mention the main characteristics of the other uptake modes as well.

2.4.2.1  The Mitochondrial Calcium Uniporter Complex (MCUC)

The main bioenergetic properties of the uniporter have been characterized in fine 
detail, and low concentrations of ruthenium red and Ru360 were shown to lead to a 
direct inhibition of the uniporter (Reed and Bygrave 1974; Vasington et al. 1972; 
Moore 1971). The finding that a highly Ca2+-selective ion channel recorded in the 
inner mitochondrial membrane (IMM) (in mitoplasts) by patch clamping (Kirichok 
et al. 2004) recapitulated the key characteristics observed for the mammalian mito-
chondrial uniporter in classical bioenergetic experiments, together with the estab-
lishment of the MitoCarta database, containing more than 1,000 mitochondrial 
proteins as identified by subtractive proteomics and GFP-fusion localization studies 
(Pagliarini et al. 2008), finally led to the molecular identification of the pore- forming 
component of MCUC. In parallel, regulatory subunits have been shown to affect 
channel activity and/or mitochondrial calcium uptake in several cell types. While the 
presence of the pore-forming subunit and of at least one regulatory subunit is a recur-
rent feature throughout different kingdoms, the actual composition of MCUC greatly 
varies in different organisms. Interestingly, complexity of MCUC does not necessar-
ily reflect evolutionary order. At the current stage, the mammalian MCUC appears to 
consist of at least of the pore-forming protein MCU, an MCU paralog (MCUb), the 
essential MCU regulator (EMRE), the regulatory MICU proteins, and, possibly, the 
mitochondrial calcium uniport regulator 1 (MCUR1), as discussed below.

The Pore-Forming MCU Component, CCDC109A

In 2011, the Mootha group and some of us independently identified the 40 kDa 
coiled-coiled protein CCDC109A that gives rise to Ca2+-permeable channel activity. 
This protein called mitochondrial calcium uniporter (MCU) was proposed to be the 
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core component of the calcium uniporter of the inner mitochondrial membrane 
(Baughman et al. 2011; De Stefani et al. 2011) as it is a phylogenetically ancient 
molecule present in most eukaryotic taxa (Bick et al. 2012). The channel-forming 
and regulatory components of MCUC are currently studied by classical electro-
physiological techniques, either using recombinant proteins or by direct patch 
clamping of mitoplasts (Fig. 2.1).

In the first paper where CCDC109A was shown to give rise to MCU channel 
activity, the protein was studied in planar lipid bilayers and displayed electrophysi-
ological properties and inhibitor sensitivity of the uniporter (De Stefani et al. 2011), 
previously identified as a Ca2+-permeable ion channel in patch-clamp experiments 
on mammalian mitoplasts (Kirichok et al. 2004). The channel was recorded in both 
works in 100 mM calcium gluconate solution displaying a conductance of 6–7 pS, 
an increased open probability with increasing negative voltages (on matrix side), 
and sensitivity to ruthenium red (RR) and gadolinium. The pore-forming nature of 
MCU was further proven by the following observations: (i) siRNA against the MCU 

Fig. 2.1 Electrophysiological studies on the components of the MCU complex. The pore-forming 
protein MCU has been investigated in various studies either using the bilayer system with recom-
binant proteins (left part) or by direct patch clamping of mitoplasts (right part). The effect of regu-
lators can be evaluated with both techniques, e.g., by co-incorporation of the regulator and the 
channel into proteoliposomes or by patch clamping of mitoplasts from knockout cells/animals 
lacking regulatory proteins. Shown structure of MCU is from PDB database (5ID3)
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protein abolished the mitochondrial calcium uptake (De Stefani et al. 2011) (ii) 
siRNA against MCU abolished the calcium current recorded in mitoplasts 
(Chaudhuri et al. 2013). (iii) single-point mutations of specific residues in the pore 
region (see below) abolished channel activity (De Stefani et al. 2011). MCU does 
not share amino acid sequence similarity with known calcium channels in plants or 
animals, but its pore region contains several negatively charged amino acids that are 
crucial for calcium transport, since mutation of these residues abolished mitochon-
drial calcium uptake as well as calcium-carrying channel formation (De Stefani 
et al. 2011). In this region, a highly conserved serine residue is involved in binding 
of the inhibitor RR. These amino acids are highly conserved in the pore region of all 
species harboring homologs of the mammalian MCU, while much less similarity is 
present in the predicted transmembrane regions. MCU homologs are found in pro-
tozoa from diverse clades including kinetoplasts (Trypanosoma cruzi), heterolobo-
sea (Naegleria gruberi), oomycetes (Phytophthora infestans), and ciliates 
(Tetrahymena thermophila). MCU homologs are also present in many fungi, includ-
ing many basidiomycetes and Allomyces macrogynus, but are absent from yeast 
(Bick et al. 2012). In the model plant Arabidopsis thaliana, six isoforms are present. 
The amino acid sequences of the highly conserved pore region are shown for some 
of the MCUs in Fig. 2.2.

Despite the discovery that MCU homologs are present in different organisms and 
that the primary structure can be very different among species (except for the pore 
region), direct biophysical characterization of MCUs has been obtained solely for 
mammalian and plant proteins (Teardo et al. 2017). These studies reveal that the 
single channel conductance in calcium and the kinetic behavior are similar for 
mammalian and plant MCUs and that in both cases, sodium can permeate the chan-
nel when divalent cations are not present in the recording medium (Fig. 2.3). This 
aspect is typical of classical calcium channels (Talavera and Nilius 2006).

The consensus view concerning the topology of MCU is that both N- and 
C-terminal domains face the mitochondrial matrix, with the two membrane- 

Fig. 2.2 Amino acid sequence alignment of the transmembrane segments (TM) and the pore 
region of MCU from different species. Sequences for the six Arabidopsis isoforms and MCU from 
human (hMCU), from C. elegans (cMCU), and from Dictyostelium (Dicty) are shown. Asterisks 
show identical residues, while : indicates conservative substitutions. Arrow indicates the serine 
residue responsible for ruthenium red sensitivity
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spanning domains connected in the intermembrane space (IMS) by the short pore 
region. The structure of the N-terminal domain has been resolved first, revealing 
that the N-terminal domain preceding the first coiled domain is essential for the 
modulation of MCU function: overexpression of MCU lacking this domain had a 
dominant-negative effect on mitochondrial Ca2+ uptake (Lee et al. 2015). A more 
recent structural study suggests that similarly to some other classical ion channels, 
pentamerization of the two transmembrane helix-containing subunits is required for 
formation of a functional channel (Oxenoid et al. 2016).

SILAC-based quantitative proteomics showed varying expression level of MCU 
in different mouse tissues, with cerebellum and gut showing highest level (Murgia 
and Rizzuto 2015). Several ion channels (including mitochondrial ones) display an 
altered expression in cancer cells, but this is apparently not the case of MCU 
(Peruzzo et al. 2016). Interestingly, while only one isoform of MCU is present in 
most organisms, six homologs of MCU were identified in the genomes of maize and 
Arabidopsis (Stael et al. 2012; Meng et al. 2015) (see also Fig. 2.2). The first pro-
teomic evidence from Arabidopsis and potato suggests the presence of specific 
MCU homologs in mitochondrial fractions at low relative abundance, in accordance 
with MCU being and organellar ion channel (Wagner et al. 2015). The diversifica-
tion of MCU genes in plants may provide regulatory flexibility on the different 
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levels of gene expression, transcription, translation, and posttranslational organiza-
tion/regulation. This idea is supported by differential tissue-dependent expression 
of MCU genes (Stael et al. 2012; Meng et al. 2015; Teardo et al. 2017).

The Dominant-Negative Pore-Forming MCU Component, CCDC109B

Mammalian MCU activity can be regulated through its paralog, CCDC109B/
MCUb. MCUb is a 33 kDa protein with a very similar structure to MCU but devoid 
of calcium-permeable channel activity in bilayer experiments due to the substitution 
of key amino acids in the pore-forming region. The protein however is still able to 
form sodium-permeable channel in the absence of divalent cations (Raffaello et al. 
2013, Raffaello et al. 2016). MCUb and MCU have been shown to interact and to 
form hetero-oligomers. When proteoliposomes contained both MCU and MCUb, 
the presence of MCUb decreased the likelihood of observing calcium-permeable 
channel activity, strongly indicating that MCUb is a dominant-negative regulatory 
subunit. In intact cells, overexpression of MCUb reduced the amplitude of calcium 
uptake into mitochondria, whereas MCUb silencing had the opposite effect, further 
proving that MCUb incorporates into the uniporter channel oligomer and reduces its 
activity. The ratio between MCU and MCUb might define the stoichiometry of 
channel assembly, thus setting a cell-specific baseline of MCU activity in various 
tissues. Indeed, MCU activity, as recorded by patch clamping of mitoplast, greatly 
varies among different tissues (Fieni et al. 2012). The molecular basis of this differ-
ence may lay in the ratio between MCU and MCUb that, at least at the mRNA level, 
has been shown to vary in different tissues. Interestingly, tissues characterized by 
low-amplitude mitochondrial calcium transients, such as the heart, show a relative 
abundance of MCUb, compared, for example, to skeletal muscle.

MICU Proteins: The EF-Hand Containing Regulatory Subunits

The mammalian MICU (mitochondrial calcium uptake) protein family consists of 
three members that share more than 40% sequence identity: (i) MICU1, (ii) MICU2, 
and (iii) MICU3. MICU1 was the first of the components of the complex to be 
described: it is a 50 kDa protein with two functional and two pseudo EF-hands that 
resides in the mitochondrial intermembrane space (Csordas et al. 2013; Patron et al. 
2014; Hung et al. 2014; Petrungaro et al. 2015; Wang et al. 2014). MICU2 is a para-
log of MICU1 with 27% sequence identity. It was first described as a protein whose 
silencing resulted in reduced mitochondrial calcium clearance in response to large 
extramitochondrial calcium pulses. Finally, comparative genomics analyses revealed 
also the presence of a third protein, MICU3. Whereas MICU1 and MICU2 had wide 
tissue expression, MICU3 was found to be almost exclusively expressed in neural 
tissues (Plovanich et  al. 2013), and at present, the precise molecular function 
MICU3 remains unclear. All three proteins as well as their homologs in other organ-
ism harbor calcium-binding EF-hand helix-loop-helix motifs. The presence of 
EF-hands is a typical feature of Ca2+ sensors in animals in plants, but not every 
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Ca2+-binding protein carries an EF-hand, and not every EF-hand binds Ca2+ (e.g., 
Gelhaye et al. 2004). Recent evidence indicates that increases in cytosolic Ca2+ are 
sufficient to induce rearrangement of MICU1 multimers and to trigger activation of 
mitochondrial Ca2+ uptake (EC50 of 4.4 μM) (Waldeck-Weiermair et al. 2015), in 
agreement with the emerging hypothesis that at low extramitochondrial 
Ca2+concentrations MICU1 exerts a gatekeeping function, while it activates the 
channel when surrounding Ca2+ concentrations are high (Csordas et  al. 2013; 
Mallilankaraman et al. 2012b). According to this hypothesis, MICU1 is sufficient to 
control calcium flux into mitochondria (Garg and Kirichok 2016; Tsai et al. 2016). 
Recombinant MICU1 was shown to directly increase MCU activity in planar lipid 
bilayer experiments in the presence of calcium (Patron et al. 2014). Multiple experi-
mental evidence indicates that in resting conditions, MICU1-MICU2 heterodimers 
act as the MCU gatekeeper, while increases in calcium concentration, by inducing a 
conformational change in the dimer, would release MICU2-dependent inhibition 
and trigger MICU1-mediated enhancement of MCU channel activity (Patron et al. 
2014). MICU2 indeed forms a heterodimer with MICU1 through an intermolecular 
disulfide bond and closes the channel at low extramitochondrial Ca2+ concentrations 
(Patron et al. 2014; Petrungaro et al. 2015). The stability of MICU2 depends on 
MICU1 (Plovanich et al. 2013; Patron et al. 2014), and loss of MICU2 in MICU1- 
silenced cells renders the difficult assignment of individual MICU1 and MICU2 
functions. In summary, currently two models propose either MICU1 (1) to act 
exclusively as a uniporter activator at high cytosolic Ca2+ concentrations (Patron 
et al. 2014) or (2) to gradually disinhibit the uniporter with increasing Ca2+ concen-
trations in the cytosol (Csordas et al. 2013). However, hetero-dimerization with the 
ubiquitous MICU2 should be taken into account, at least in mammals when trying 
to describe models that best reflect the in vivo situation.

In addition to MICU1, skeletal muscle-specific alternative splice isoform of 
MICU1, MICU1.1, characterized by the addition of a micro-exon has recently been 
described (Vecellio Reane et al. 2016). MICU1.1 was shown to bind Ca2+ one order 
of magnitude more efficiently than MICU1 and activated MCU-mediated calcium 
uptake at lower Ca2+ concentrations than MICU1-MICU2 heterodimers.

MICU protein is conserved also in plants, where typically one or two homologs 
can be found depending on species (Wagner et  al. 2015). Arabidopsis possesses 
only a single MICU gene, and knockout strongly affects mitochondrial Ca2+ dynam-
ics (Wagner et al. 2015). Arabidopsis MICU contains an additional, third canonical 
EF-hand motif, which is conserved among plants and protists but is absent in mam-
malian MICUs and may open additional complexity of the regulation of MCUC 
activity by calcium.

Essential MCU Regulator EMRE

Another proposed core component of the mammalian MCUC is EMRE, a 10 kDa 
metazoan-specific protein that spans the inner mitochondrial membrane with only 
one transmembrane motif. Although the recombinant MCU protein when inserted 
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into a bilayer membrane in electrophysiological experiments alone is able to form a 
functional channel (De Stefani et al. 2011), in vivo EMRE seems to be required for 
channel formation, at least in mammals. A physical interaction between transmem-
brane helices between mammalian MCU and EMRE has been shown to take place 
(Tsai et al. 2016). Homologs of EMRE are not present in plants, fungi, or protozoa, 
and it has been recently shown that EMRE is required for Ca2+ uptake in the case of 
mammalian MCU, but not of MCU from the slime mold Dictyostelium discoideum: 
while expression of MCU from Dictyostelium alone was sufficient to import Ca2+ 
into yeast mitochondria (which lacks MCUC), human EMRE needed to be expressed 
alongside MCU to form an active Ca2+ uniporter system (Kovacs-Bogdan et  al. 
2014). Similarly to Dictyostelium, plants possess a minimal genetic uniporter con-
figuration that lacks EMRE (Wagner et al. 2015, 2016).

Information about the structure of C. elegans MCU has recently become avail-
able: it was hypothesized that the outer and inner juxtamembrane helices as well as 
the loop region L2 are unstable regions which may undergo conformational changes 
upon activation by EMRE in order to create the lateral exit path for Ca2+ (Oxenoid 
et al. 2016). In plant and Dictyostelium MCUs, relatively few amino acids are con-
served in the regions proposed to be important for the regulation of the C. elegans 
channel (Fig. 2.4).

Further research is needed to understand whether differences in these regions 
might account for the differential participation of EMRE in channel activity, and in 
general, mutations of the very few highly conserved amino acids in these regions 
might bring to the fine elucidation of ion permeation through this novel type of 
calcium channel. EMRE has been proposed to have another role as well, i.e., to 
bridge MCU and its regulators MICU1/MICU2 and thus to be indispensable for the 

Fig. 2.4 Amino acid sequence alignment of the inner juxta membrane helix and of the loop region. 
Only few amino acids are conserved among different species in the regions proposed to be impor-
tant for calcium conduction within the channel. Sequences for the six Arabidopsis isoforms and 
MCU from human (hMCU), from C. elegans (cMCU), and from Dictyostelium (Dicty) are shown. 
Asterisks show identical residues, while : indicates conservative substitutions. See text for further 
details
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activity of the mammalian uniporter in vivo (Sancak et al. 2013). However, when 
the binding properties of MCU/EMRE with MICU1 and MICU1.1 were investi-
gated by surface plasmon resonance analysis, at least under the used experimental 
conditions (in vitro), EMRE was not found to be not involved in MCU-MICU1 
interaction, in accordance with the electrophysiological data obtained regarding the 
effect of MICU1 on MCU activity (Vecellio Reane et al. 2016). Recently, EMRE 
was proposed to regulate MCU channel activity depending on the matrix Ca2+ con-
centration (Vais et al. 2016). Altogether, the role of EMRE is far from being clari-
fied, even though MCU together with EMRE and MICU1 has been proposed to 
correspond to the minimal configuration of MCUC (Tsai et al. 2016). This state-
ment however cannot be true for organisms where EMRE or a homolog is not pres-
ent in the genome (like in plants and slime mold). It cannot be a priori excluded that 
a still unidentified protein fulfills the same function in plants and other EMRE- 
lacking organisms. Likewise, the possibility that EMRE helps the correct membrane 
insertion/folding of MCU cannot be dismissed as to date yet.

MCU Regulator 1 (MCUR1)

MCUR1 (mitochondrial calcium uniporter regulator 1)/CCDC90A is a 39  kDa 
protein with two predicted transmembrane domains that is supposed to interact 
with MCU (Mallilankaraman et al. 2012a) although later studies were unable to 
support this interaction (Sancak et al. 2013; Paupe et al. 2015). Paupe et al. (2015) 
provided evidence that MCUR1 is in fact an assembly factor of cytochrome c oxi-
dase and argued that genetic manipulation modulates mitochondrial membrane 
potential, imposing only a secondary effect on Ca2+ transport. In support of this 
notion, MCUR1 has an orthologue in budding yeast which lacks core MCUC com-
ponents. Although Vais et al. (2015) recently showed that MCUR1 affects MCU 
activity in patch-clamp experiments, direct regulation of Ca2+ uniport through 
MCUR1 is still debated. Arabidopsis possesses two MCUR1 homologs that lack 
functional characterization. Interestingly one of them has been identified as a 
plant-specific subunit of complex IV by proteome analysis (Millar et  al. 2004; 
Klodmann et al. 2011).

Altogether, functional MCUC has different components in different organisms, 
with MCU and MICU family members being the only highly conserved constitu-
ents. Figure 2.5 shows the composition of MCUC in organisms where characteris-
tics of this complex have been studied in detail.

2.4.2.2  Alternative Calcium Uptake Pathways

Additional Ca2+ uptake mechanisms in mammalian mitochondria were proposed by 
several groups still before the discovery of MCU. Ca2+ transients in mammalian cell 
culture where MCU expression is knocked down (De Stefani et al. 2011; Baughman 
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et al. 2011; Bondarenko et al. 2014) and in the liver of mcu animals (Pan et al. 2013) 
are very efficiently abolished indicating that the MCUC has a dominating role 
among uptake mechanisms. This of course does not rule out the possibility that 
other mechanisms make major contributions to Ca2+ uptake, for example, during a 
specific developmental stage or in a specific tissue. Indeed, specific mitochondrial 
Ca2+ uptake modes (e.g., Ca2+-selective conductance (mCa) 1 and 2 and rapid mode 
of uptake (RaM)) have been observed in animals, which however currently cannot 
be ascribed to well-defined molecules. These uptake modes apparently differ from 
MCUC-mediated Ca2+ uptake in terms of uptake kinetics, pharmacology, and Ca2+ 
affinity (Sparagna et al. 1995; Michels et al. 2009). Potential candidates for these 
distinct uptake modes include uncoupling proteins 2 and 3 (UCP2/UCP3), the tran-
sient receptor potential channel TRPC3, and ryanodine receptor RyR1. UCP2/
UCP3 were originally proposed to be an essential components of mitochondrial 
Ca2+ uniport (Trenker et al. 2007), but currently it seems more likely that it has indi-
rect effects on Ca2+ uptake into mitochondria (Brookes et al. 2008; De Marchi et al. 
2011; Bondarenko et  al. 2015). The mitochondrial ryanodine receptor (mRyR1) 
belongs to the RyR family that exists as three isoforms (RyR1–3) in animals but has 
no homologs in plants (Krinke et al. 2007). A low level of RyR1 is detectable in the 
IMM of heart mitochondria and provides rapid transport of Ca2+ that is insensitive 
to ruthenium red (Beutner et al. 2001, 2005). A small fraction of TRPC3 was found 
to be localized to mitochondria. It was then proven by genetic means that a signifi-
cant fraction of mitochondrial Ca2+ uptake relies on TRPC3 expression (Wang et al. 
2015; Feng et  al. 2013). In summary, the abovementioned alternative pathways 
should be taken into account when interpreting the phenotypes observed in MCU 
knockdown systems. Finally, the hypothesis that MCUC is responsible also for the 
different uptake modes, at least in some cell types, cannot be formally excluded.

Fig. 2.5 The presence of MCUC components in different organisms. See text for further details
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2.5  Mitochondrial Ca2+ Export

Following the transient accumulation of calcium in the matrix, a part of this ion is 
exported, and a part remains inside as non-free calcium. The exact chemical states 
of bound Ca2+ inside the matrix of the living cell and the relative contributions of 
proteins, metabolites, and Pi are largely unclear in both animals and plants. Ca2+ can 
be extruded from mitochondria by an antiport mechanisms giving rise to the so- 
called Ca2+ cycle (Carafoli 1979). This way matrix Ca2+ concentrations are regulated 
in order to avoid overload, which can be deleterious for mitochondrial function (see 
above). Two known Ca2+ export systems are two exchangers, namely, the cation/
cation exchanger family member Na+/Ca2+ exchanger (Crompton et al. 1977, 1978) 
and a H+/Ca2+ exchanger (Akerman 1978; Fiskum and Lehninger 1979) of the cat-
ion/proton exchanger family.

2.5.1  The Sodium-Calcium Exchanger NCLX and the Proton- 
Calcium Exchanger CAX

The mammalian protein NCLX (Na/Li/Ca exchanger) (Palty et al. 2010) has been 
proposed to underlie molecular entity of electrogenic Ca2+ transport against Na+. 
De Marchi et al. (2014) have provided further relevant evidence that NCLX repre-
sents the long-sought mediator of Ca2+ export from the mitochondrial matrix. As 
to CAX, this protein was located to mitochondria in Plasmodium falciparum, 
where it mediates Ca2+ efflux from the mitochondrial matrix (Rotmann et  al. 
2010). In other organisms the mechanisms of calcium release from mitochondria 
is less clear.

2.5.2  Leucine Zipper-EF-Hand-Containing Transmembrane 
Protein1 (LETM1)

LETM1 is a one-transmembrane segment-containing protein that is located in the 
mitochondrial inner membrane and is defective in Wolf-Hirschhorn syndrome 
(Zollino et al. 2003; Endele et al. 1999; Dimmer et al. 2008). Initially proposed to 
act as an a K+/H+-exchanger (Nowikovsky et  al. 2004; Dimmer et  al. 2008), a 
genome-wide RNAi screen for proteins mediating mitochondrial Ca2+ dynamics 
identified LETM1 as a Ca2+/H+ antiporter (Jiang et al. 2009; Waldeck-Weiermair 
et al. 2011; Tsai et al. 2014; Doonan et al. 2014). In vitro, LETM1 has been pro-
posed to function as electroneutral Ca2+/H+ antiporter (Tsai et al. 2014). Recent 
electron microscopy studies reveal a hexameric structure with a central cavity and 
with two different conformational states under alkaline and acidic conditions 
(Shao et al. 2016). While a H+-driven Ca2+ export by LETM1 is plausible, whether 
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LETM1 in vivo functions as Ca2+/H+ antiporter or as a K+/H+ exchanger, as pro-
posed by Nowikovsky and Bernardi (2014), is still a highly debated issue. Several 
arguments point to LETM1 working as potassium/proton antiporter in intact mito-
chondria. For example, changes in mitochondrial morphology with altered LETM1 
expression could be reverted through the ionophore nigericin that specifically 
mediates K+/H+-exchange (Nowikovsky et  al. 2004). Interestingly, high-level 
expression of LETM1 was found to be an independent poor prognostic factor of 
breast cancer (Li et  al. 2015). In plants, the Arabidopsis genome contains two 
genes with homology to LETM1 (Zhang et al. 2012). Partial depletion of LETM 
did not affect mitochondrial morphology. Instead, mitochondrial protein transla-
tion was altered, possibly as a secondary effect of disrupted K+ homeostasis 
(Hashimi et al. 2013), based on the observation that nigericin rescued the transla-
tion phenotype in cultured yeast cells.

2.5.3  Permeability Transition Pore

Transient opening of the mitochondrial permeability transition pore (PTP) has been 
proposed to cause release of Ca2+ from mammalian mitochondria (Bernardi and von 
Stockum 2012). At partial loss of membrane potential due to the opening of PTP, a 
large Ca2+ gradient (expected only at Ca2+ overload) would allow Ca2+ extrusion in 
a passive way. However, a partially or fully dissipated electrochemical gradient 
would not only allow Ca2+ extrusion but also severely interfere with matrix physiol-
ogy, including ATP/ADP exchange, Pi uptake, and metabolite shuttling, which 
strictly depend on the proton motive force. Thus, it seems likely that such Ca2+ 
release via PTP occurs under specific, pathological conditions. Experimental evi-
dence is still missing to either prove or disprove the above hypotheses.

2.6  Pathophysiological In Vivo Consequences of Alteration 
of Mitochondrial Calcium Homeostasis by Genetic Tools

Following the identification of proteins playing fundamental roles in the calcium 
uptake and exit pathways, the field of mitochondrial calcium signaling experienced 
a period of “Renaissance.” Finally, fine dissection of the molecular pathways gov-
erning mitochondrial calcium homeostasis has become feasible using genetic tools. 
However, when interpreting the final outcome of knockout or knockdown experi-
ments in terms of calcium levels, of metabolism, and of cell fate, one has to keep in 
mind that genetic manipulation of one MCUC component might lead to altered 
expression of (another) component(s) as well (e.g., when MICU1 is silenced, a dra-
matic reduction also of MICU2 protein occurs (Patron et al. 2014).

A few recent in vivo studies demonstrate that mitochondrial calcium homeosta-
sis is crucial for regulation of metabolism, and its alterations are linked to 
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 pathologies. Genetic manipulation of MCU in lower organisms such as zebra fish 
(Prudent et al. 2013) and Trypanosoma brucei (Huang et al. 2013) resulted in major 
developmental and energetic defects, although such effect was not accentuated in 
the knockout mouse model, possibly due to compensatory mechanisms. Low levels 
of basal matrix calcium in the MCU−/− mice led to markedly increased levels of 
PDH phosphorylation (Pan et al. 2013). In another work, postnatal manipulation of 
MCU levels in mice (by using adeno-associated virus-mediated gene transfer) dem-
onstrated the contribution of MCUC to the regulation of skeletal muscle tropism. 
MCU overexpression or downregulation caused muscular hypertrophy or atrophy, 
respectively, likely independent of metabolic alterations but dependent on a novel 
Ca2+-dependent mitochondria-to-nucleus signaling pathway via transcriptional reg-
ulators (Mammucari et al. 2015). In mice with myocardial MCU inhibition, obtained 
by transgenic expression of a dominant-negative (DN) MCU, a strong correlation 
between MCU function, MCU-enhanced oxidative phosphorylation, and correct 
pacemaker cell function was observed (Wu et al. 2015). In addition, in vivo evi-
dence exists in favor of a serine/threonine kinase LKB1-mediated regulation of 
MCU expression that controls mitochondrial calcium uptake and neurotransmitter 
release properties in a bouton-specific way through presynaptic Ca2+ clearance 
(Kwon et al. 2016). Changes of mitochondrial calcium level in neurons activated by 
insulin-like growth factor-1 receptor signaling also constitute a critical regulator of 
information processing in hippocampal neurons by maintaining evoked-to- 
spontaneous transmission ratio as assessed in vivo (Gazit et al. 2016). Furthermore, 
inhibition of MCU in Drosophila, during development in a brain region that is criti-
cal for olfactory memory formation, caused memory impairment in adults without 
altering the capacity to learn (Drago and Davis 2016). Lack of one of the MCU 
isoforms of Arabidopsis with prevalent expression in roots caused a profoundly 
altered mitochondrial ultrastructure and shortened root length in intact plants 
(Teardo et al. 2017).

As to the regulator, MICU1, mitochondria in a mouse model of MICU1 defi-
ciency showed altered calcium uptake. Deletion of MICU1 resulted in significant 
perinatal mortality. MICU1 knockout animals displayed increased resting mito-
chondrial calcium levels, altered mitochondrial morphology, and reduced 
ATP. Deletion of one allele of EMRE helped to normalize calcium uptake while 
simultaneously rescuing the high perinatal mortality observed in young MICU1 −/− 
mice (Liu et al. 2016). In humans, homozygous patients carrying a loss-of-function 
mutation of MICU1 are characterized by myopathy, cognitive impairment, and 
extrapyramidal movement disorder (Logan et  al. 2014), along with an increased 
agonist-induced mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations and 
a decreased cytosolic Ca2+ signal. However, at least under resting conditions, the 
fibroblasts from affected individuals do not display defects in overall cellular meta-
bolic function, but chronic elevation of the mitochondrial matrix Ca2+ load seems to 
lead to moderate mitochondrial stress, resulting in fragmentation of the mitochon-
drial network. In addition, homozygous deletion of exon 1 of MICU1 was shown to 
be associated with fatigue and lethargy in children with normal mitochondrial oxi-
dative phosphorylation enzyme activities in muscle (Lewis-Smith et al. 2016).
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2.7  Conclusion

As witnessed by the above-reported data, a considerable advancement has been 
achieved in the field of mitochondrial calcium handling in the last few years. Now, 
an even more exciting and stimulating era is expected to come. Following the iden-
tification of the calcium uptake and exit machineries, research will most probably 
focus on understanding the fine regulation of these components, e.g., by posttrans-
lational modifications, and on elucidation of their role in different physiological and 
pathologic situations. Hopefully, the recently obtained information regarding the 
structure of several components will also prompt smart drug design in order to fully 
exploit the information arising in the field, in the context of pathologies linked to 
altered mitochondrial calcium handling.
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3.1  Mitochondria, Cell Metabolism and Death

Mitochondria are complex organelles responsible for producing energy in the form 
of ATP for most eukaryotic cells. They are also at the center of several other essen-
tial processes including Ca2+ homeostasis, heme and steroid biosynthesis. In addi-
tion, the mitochondrion regulates cellular responses to stress and controls cell death.

To produce ATP, mitochondria use substrates produced in the cytosol by carbo-
hydrate, lipid, and protein metabolic pathways. Products such as acetyl co-enzyme 
A enter the tricarboxylic acid (TCA) cycle. The TCA cycle synthesizes NADH and 
FADH2, which donate their electrons to the electron transport chain and their H+ 
ions to be pumped out of the matrix by the NADH dehydrogenase and other electron 
transport complexes. This creates a proton motive force that in turn drives the F1FO 
ATP synthase (Mitchell 1961). Upon kinetic repositioning of the ATP synthase 
rotor, ATP is synthesized from ADP and Pi (Watt et  al. 2010). The machinery 
required for ADP/ATP exchange between the cytoplasm and the matrix includes the 
outer membrane voltage-dependent anion channel (VDAC) and the adenine 
 nucleotide transporter (ANT) at the inner membrane. These proteins are intimately 
linked to the ATP synthase (Chen et al. 2004).
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3.2  Mitochondrial Inner Membrane Leak: Regulator 
of Metabolic Rate and Uncoupling

Two currents complete the current loop of the proton pumping activity of the elec-
tron transport complexes. First, hydrogen ion (H+) translocation through the ATP 
synthase in the opposite direction to that of the electron transport complexes forms 
a current during the synthesis of ATP. Second, an apparently wasteful leak in the 
inner mitochondrial membrane uncouples oxidation from phosphorylation as H+ 
ions enter the matrix through channels independent of ATP production. Classically, 
uncoupling proteins generate heat for organisms with large surface area to volume 
ratio and may depolarize mitochondria in order to temper oxidative damage and 
regulate metabolic rate during hibernation and at other times (Nicholls and Rial 
1999; Andrews et al. 2005; Divakaruni and Brand 2011; Fedorenko et al. 2012). In 
addition to uncoupling proteins, however, intrinsic uncoupling exists within several 
inner mitochondrial membrane channels and transporters including the F1FO ATP 
synthase (Caviston et al. 1998; D’Alessandro et al. 2008).

3.3  Mitochondrial Inner Membrane Channels 
and Exchangers Are Necessary for Ca2+ Cycling 
and Cellular Ca2+ Dynamics

Mitochondrial inner membrane depolarization occurs not only through proton 
movement but also via the flux of other ions including Ca2+ across mitochondrial 
membranes. Ca2+ movement into the mitochondrial matrix is a physiological event 
that takes place in response to increased cytosolic Ca2+ levels. Ca2+ buffering is fre-
quently employed by mitochondria in cells that experience rapidly changing cyto-
solic Ca2+ levels such as those of excitable tissues.

Mitochondria regulate cytosolic levels of Ca2+ and the release of Ca2+ and metab-
olites using several ion channels and exchangers. The Ca2+ uniporter ion channel 
(MCU) located at the mitochondrial inner membrane participates in mitochondrial 
Ca2+ uptake within the cell body of many types of cells and also in the presynaptic 
terminals of neurons (Billups and Forsythe 2002; Kang et al. 2008; Chouhan et al. 
2012; Rizzuto et al. 2012). Isoforms of MCU and its helper MICU confer tissue 
specificity and add complexity to the mechanisms of activity-dependent energy pro-
duction by mitochondria (Raffaello et  al. 2012; De Stefani and Rizzuto 2014). 
Mitochondrial Ca2+ release also appears to be highly regulated, but, unlike the 
MCU, the molecular components of a Ca2+ release channel were only recently dis-
covered and form the main focus of this chapter.

Ca2+ rerelease from mitochondria prolongs the elevation of cytosolic Ca2+ after 
influx across the plasma membrane (Zucker and Regehr 2002). During neuronal 
activity, high cytosolic Ca2+ levels are cleared by the actions of Ca2+ ATPases at the 
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plasma membrane and by buffering through uptake by intracellular stores including 
ER and mitochondria (Rizzuto et al. 2012; Lopreiato et al. 2014); these processes 
reset the normally low Ca2+ levels present in resting cells. The buffered Ca2+ is even-
tually rereleased. In synaptic endings, residual Ca2+ increases the Ca2+ available for 
synaptic vesicle fusion, enhancing the amount of neurotransmitter released for a 
given stimulus (Fig. 3.1) (Jonas 2006; Neher and Sakaba 2008).

Ca2+ influx into cells and into mitochondria also regulates TCA cycle enzymes 
(Denton 2009) and enzymes in the electron transport chain (Gellerich et al. 2010) 
to speed the process of ATP synthesis. As cytosolic Ca2+ increases during cellular 
activity, mitochondrial TCA cycle enzymatic activity is enhanced, increasing the 
levels of mitochondrial NADH and ATP. Ca2+ influx into mitochondria enhances the 
proportion of pyruvate dehydrogenase complex in its active, dephosphorylated 
form. Ca2+ also increases the ability of isocitrate dehydrogenase and oxoglutarate 
dehydrogenase to bind their substrates. The result is regulation of mitochondrial 
TCA enzymes by cytosolic Ca2+ or “external regulation” as opposed to “internal 
regulation” that is caused by changes in matrix NAD/NADH and ADP/ATP ratio. 
In neurons, increases in cytosolic Ca2+ arise from depolarization of the plasma 
membrane with resultant increase in permeability to Ca2+ through glutamate recep-
tors and voltage-gated Ca2+ channels. In addition, mitochondria receive Ca2+ from 
the ER which partners with mitochondria to respond to cytosolic Ca2+ loads. 
Elevated cytosolic Ca2+ enhances the release of Ca2+ from IP3 receptors directly 
into mitochondria within a tightly coupled space between the two organelles 
(Rizzuto et al. 2012). Oscillatory Ca2+ release from ER provided by IP3 receptors 
also contributes to influx of Ca2+ into the mitochondria and drives TCA cycle 
enzymes even more effectively than sustained elevations of mitochondrial Ca2+ 
(Hajnoczky et al. 2000), most likely because sustained Ca2+ allows re-equilibration 
of the signal in the matrix.

Fig. 3.1 Calcium rerelease from mitochondria is required for certain forms of presynaptic plastic-
ity. Left: During an action potential invasion of the presynaptic nerve terminal, Ca2+ enters the 
terminal. A few synaptic vesicles fuse, releasing neurotransmitter. Middle: During high-frequency 
activity of the presynaptic nerve, Ca2+ fills the terminal and is taken up into mitochondria by the 
mitochondrial Ca2+ uniporter (MCU). Many vesicles fuse with the plasma membrane, and synaptic 
depression ensues. Right: After recovery of vesicle pools from the high-frequency event, mito-
chondria rerelease Ca2+ via Ca2+-dependent exchangers and Ca2+-sensitive channels in the inner 
mitochondrial membrane (mPTP-like channel). The increased Ca2+ level in the terminal provides 
for enhanced vesicle fusion upon a single action potential invasion of the terminal compared to the 
left panel, accounting for presynaptic plasticity of neurotransmitter release
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The interaction between cellular activity, Ca2+ influx into mitochondria, and 
energy generation was clarified in a study in drosophila neuromuscular junction 
(Chouhan et al. 2012). Using a complex set of imaging techniques including geneti-
cally encoded Ca2+/pH indicators, it was shown that neuronal activity enhances Ca2+ 
uptake by mitochondria, increases mitochondrial NAD(P)H levels, and hyperpolar-
izes the mitochondrial inner membrane potential. These events are inhibited by 
pharmacological agents that block mitochondrial Ca2+ uptake. Levels of cytosolic 
Ca2+ remain similar in different neurons despite their very different firing rates, sug-
gesting that a certain level of cytosolic Ca2+ is optimum for energy production dur-
ing activity. An exciting implication of these novel findings is that during 
development or neural/synaptic plasticity, acute changes in cytosolic Ca2+ levels 
could theoretically produce plasticity in mitochondrial responses to adjust to 
changes in energy demands in neurons and to readjust cytosolic Ca2+ levels to opti-
mize synaptic responses and neuronal excitability.

Mitochondrial management of Ca2+ in order to decrease cytosolic Ca2+ burden is 
observed in the large mammalian brain stem presynaptic terminals of the Calyx of 
Held. In this synapse, mitochondria remove Ca2+ during rises in cytosolic Ca2+ pro-
duced by Ca2+ influx through voltage-gated channels. Mitochondrial Ca2+ uptake 
rapidly dampens the overall rise in Ca2+ in the presynaptic terminal. The effect of 
this is to prevent synaptic depression by attenuating vesicle depletion and allowing 
for continued effective synaptic transmission during a train of action potentials 
(Billups and Forsythe 2002).

3.4  Mitochondrial Inner and Outer Membrane Channel 
Activity Regulates Ca2+ Rerelease from Mitochondria 
After Buffering

After Ca2+ buffering, Ca2+ rerelease from mitochondria occurs through exchangers 
and channels located on the mitochondrial inner membrane and via channels in the 
outer membrane. Ca2+-sensitive ligand-gated mitochondrial channels are widely 
conserved and found in species from invertebrates to mammals. These channels 
open in response to elevated Ca2+ within the mitochondrial matrix. In the squid pre-
synaptic terminal, opening of a Ca2+-activated mitochondrial channel is correlated 
with enhanced neurotransmitter release (Fig.  3.1) (Jonas et  al. 1999). 
Electrophysiological recordings (Jonas et al. 1997) demonstrate that within the rest-
ing presynaptic terminal, the conductance of mitochondrial membranes is low 
(Jonas et al. 1999). In contrast, during high-frequency electrical stimulation of the 
presynaptic nerve, a large increase in mitochondrial membrane ion channel activity 
takes place (Jonas et al. 1999). The delay in onset of the mitochondrial activity, the 
dependence of the mitochondrial channel activity on Ca2+ uptake across the plasma 
membrane, and the persistence of the mitochondrial activity after stimulation are in 
keeping with the role of a channel and/or exchanger in rereleasing Ca2+ from mito-
chondria during certain forms of short-term plasticity (Friel and Tsien 1994; Tang 
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and Zucker 1997; Jonas et al. 1999). Furthermore, mitochondrial channel activity 
and short-term increases in Ca2+-dependent synaptic transmitter release are both 
abrogated by applying the uncoupler FCCP (carbonyl cyanide p- trifluoromethoxyp
henylhydrazone), which depolarizes mitochondria, preventing Ca2+ handling (Jonas 
et al. 1999).

Although exchangers as well as channels regulate the release of ions and metab-
olites across the inner membrane, the role of ion and metabolite release by the 
mitochondrial outer membrane is played in large part by the outer mitochondrial 
membrane channel known as the voltage-dependent anion channel (VDAC) which 
transfers Ca2+, ATP, and other metabolites across the outer membrane into the cyto-
sol (Vander Heiden et  al. 2001; Gottlieb et  al. 2002). VDAC also regulates the 
uptake of ADP and other metabolites during normal and pathological cell activities 
(Rostovtseva and Colombini 1997; Mannella and Kinnally 2008; Pang et al. 2010) 
and is regulated by cytoskeletal elements, in particular tubulin in its dimeric form 
(Rostovtseva and Bezrukov 2012).

3.5  Pathological Inner Membrane Depolarization: 
Mitochondrial Permeability Transition

An increase in mitochondrial outer membrane permeability (MOMP) may also be 
triggered by an acute inner membrane depolarization (Galluzzi et al. 2009), particu-
larly after cytosolic and mitochondrial Ca2+ overload. Although, as described, Ca2+ 
uptake and rerelease from mitochondria is a normal physiological event in cells, 
accumulation of Ca2+ in the matrix can diminish energy production by the ATP 
synthase (Budd and Nicholls 1996) once the availability of other ions for exchange 
with Ca2+ has become exhausted. Ca2+ overload then produces an uncoupling pro-
cess described historically as a rapid increase in permeability of the mitochondrial 
inner membrane to solutes and the halting of ATP production (Haworth and Hunter 
1979; Hunter and Haworth 1979a, b). This phenomenon is termed permeability 
transition (PT).

PT can be reversible or irreversible (Haworth and Hunter 1979; Crompton 1999; 
Huser and Blatter 1999; Petronilli et al. 1999; Hausenloy et al. 2004; Wang et al. 
2008; Korge et al. 2011). If not reversed by normalization of cellular conditions, a 
more extreme form of catastrophic PT takes place characterized by structural break-
down of the mitochondrial matrix accompanied by outer mitochondrial membrane 
rupture and cell death. The difference between this kind of mitochondrial cell death 
and apoptotic death produced by MOMP seems to be that pathological PT is associ-
ated with necrotic cell death such as is found in ischemia or injury, whereas MOMP 
occurring in the presence of sufficient amounts of ATP may have a more important 
role in developmental and genetically predetermined death (Baines 2011; Bonora 
and Pinton 2014). Intermembrane space pro-apoptotic factors such as cytochrome c 
and Smac/DIABLO are released during both forms of cell death. In MOMP, outer 
membrane permeabilization alone leads to release of these factors, whereas in 
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prolonged PT, rupture of the outer membrane after inner membrane swelling 
releases pro-apoptotic factors into the cytosol (Galluzzi et al. 2009).

PT has been extensively studied for its role in ischemic injury in the brain, heart, 
and other organs as well as in neurodegenerative conditions (Bonora et al. 2014). In 
addition to Ca2+ influx into the matrix, PT is also induced by ROS, elevated inorganic 
phosphate, and intracellular acidification (Szabo et al. 1992; Giorgio et al. 2013b). 
In contrast, it is inhibited by ATP/ADP and Mg2+ (Kowaltowski et al. 1998; Crompton 
1999). The pharmacological agent most efficient in inhibiting PT is cyclosporine A 
(CsA), an immunosuppressant drug which binds to cyclophilin D (CypD) and inhib-
its the channel activity associated with PT (see below). Inhibitors of ANT can either 
attenuate (bongkrekic acid) or enhance (atractyloside) PT opening (Hunter and 
Haworth 1979a; Szabo and Zoratti 1991; Giorgio et al. 2009). Recent reports have 
also confirmed increased activity of PT by polyphosphates, chains of 10s–100 s of 
repeating phosphates linked by ATP-like high energy bonds (Abramov et al. 2007; 
Seidlmayer et al. 2012; Holmstrom et al. 2013; Stotz et al. 2014). The actions of Ca2+ 
may also require polyhydroxybutyrate (PHB), which enters mitochondria and 
enhances the ability of Ca2+ to induce PT (Elustondo et al. 2013).

3.6  The Quest for an Inner Membrane Ca2+-Sensitive 
Uncoupling Channel: The PT Pore

3.6.1  Electrophysiological Properties of the Mitochondrial PT 
Pore (mPTP)

Thus, PT is an important event that performs both physiologic and pathophysiologic 
functions. PT most likely begins as the opening of a Ca2+-sensitive ion channel in 
the inner mitochondrial membrane similar to the ion channel activity initiated by 
physiological mitochondrial Ca2+ influx. The Ca2+ release channel is heavily regu-
lated; therefore it is assumed that only after prolonged opening does pathological 
PT (with MOMP) occur (Bernardi 1999). The conversion of a physiological Ca2+ 
extrusion mechanism into a pathological channel opening is perhaps correlated with 
energy failure as a result of arrest of ATP-synthesizing activity and slowing of 
energy-dependent Ca2+ extrusion mechanisms. Although there are unknown factors 
that regulate the transition from physiological to pathophysiological events, reactive 
oxygen species, mitochondrial Ca2+ overload, changes in matrix pH, Pi, polyphos-
phate, and mitochondrial inner membrane depolarization are pathological circum-
stances contributing to PT. Nevertheless, identification of the molecular structure of 
the pore will provide the target for regulatory activities, allowing for a greater 
understanding of PT modulation during health and disease.

Description of the biophysical properties of the pore that opens in the inner 
membrane during PT (the mPTP) provided the earliest indication that PT was initi-
ated by the opening of an ion channel. The first electrophysiological studies of mito-
chondrial inner membrane were published in 1987. This early report described a 
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~100 pS channel recorded by patch-clamping giant mouse liver mitochondria pro-
duced by cuprizone application (Sorgato et al. 1987). In the late 1980s, a putative 
mPTP was recorded by patch-clamping mitochondrial inner membrane or mitoplast 
preparations (Petronilli et al. 1989). The activity occurred at positive potentials of 
the patch pipette and was found either in whole organelle mode or in single-channel 
recordings in the organelle-attached configuration. The activity was slightly anion 
over cation selective with multiple subconductance states ranging from 30 pS to a 
peak single-channel conductance of 1.3 nS. Lower conductances were attributed to 
substates of the larger channel openings because of long periods lacking activity 
followed by periods of multi-conductance behavior (Petronilli et  al. 1989). 
Conductances of 550 pS were frequently observed at positive potentials. Gating was 
less common at negative potentials, but this observation was consistent with the 
presence of prolonged openings and fewer subconductance states at negative patch 
potentials contrasted with increased flickering at positive potentials. The authors 
concluded that conductance levels were not sharply defined, consistent with the 
existence of many varied conductance levels of the channel.

In 1989, Kinnally et  al. recorded a similar mitochondrial multi-conductance 
channel (MMC) in mouse liver mitoplasts (Kinnally et  al. 1989). This channel 
changed over time, with low activity at the onset of the recording followed by pro-
gressively higher activity at later times during the recording. The channels were 
sometimes open more frequently at negative potentials, but at times channel activity 
was more frequent at positive potentials. Channel activity displayed multiple con-
ductances ranging from 10 to 1,000 pS and was weakly cation selective. These early 
studies began to establish expected criteria for activity of mPTP.

Shortly after the first recordings of the putative mPTP were performed, similar 
inner membrane activity was found to be inhibited by CsA. In patch-clamp experi-
ments performed in liver mitochondria, channel activity was rapidly inhibited by 
submicromolar concentrations of CsA in a manner consistent with the expression of 
the binding site on the matrix side of the inner membrane. Ca2+-activated large con-
ductance channel activity up to 1.3 nS was inhibitable, but a 107 pS inner membrane 
conductance similar to the first recorded inner mitochondrial membrane channel 
was also observed in the recordings. This smaller conductance was resistant to CsA, 
suggesting that this activity might be due to a separate ion channel (Szabo and 
Zoratti 1991). The large conductance channel was sensitive to Mg2+, Mn2+, Ba2+, and 
Sr2+ in that order, which inhibited the activity in a competitive manner with Ca2+, the 
main activator of the channel (Szabo et al. 1992).

3.6.2  Characterization of a Molecular Complex Regulating 
the Pore

The recent identification of the molecular structure matching the biophysical prop-
erties of mPTP was aided by seemingly unrelated sets of findings. One was that 
Bcl-xL enhances metabolic efficiency (decreases uncoupling) by binding to the 
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β-subunit of the ATP synthase. The second finding was that CypD, which had been 
known for many years to regulate PT, binds to the stator arm of ATP synthase, spe-
cifically on the OSCP subunit. The third finding suggested that closure of the mPTP 
is related to the level of CypD expression in a developmentally regulated manner as 
CypD falls at the onset of respiration in mammalian heart. The final project found 
that ATP synthase assembles into a very large complex with other proteins that may 
regulate the mPTP. These findings and their convergence that led to the definition of 
the molecular nature of the mPTP will now be discussed in greater detail.

3.6.3  Bcl-xL Regulates Metabolic Efficiency by Binding 
to the β-Subunit of the ATP Synthase

Although Bcl-2 family proteins regulate mitochondrial outer membrane permeabil-
ity to produce or inhibit cell death (Galonek and Hardwick 2006; Jonas 2009; Jonas 
et al. 2014; Park et al. 2014), Bcl-xL also alters the metabolic properties of cells, 
even in the absence of cell death signals. Bcl-xL increases the release of ATP through 
enhanced VDAC opening. Enhanced ATP release by mitochondria decreases the 
probability of MOMP in cancer cell lines by providing extra ATP to overcome cell 
death stimuli (Vander Heiden et al. 2001; Gottlieb et al. 2002). In the neuronal syn-
apse, injection of either Bcl-xL or ATP enhances synaptic transmitter release (Jonas 
et al. 2003), suggesting that Bcl-xL helps increase ATP levels in the synapse during 
synaptic activity (Hickman et al. 2008).

Inefficiency of metabolism is correlated with cell death under conditions of neu-
rodegeneration or acute cellular injury such as that occurring during PT (Brand 
2005; Beal 2007; Dodson and Guo 2007). In contrast, a highly efficient state of 
metabolism requires maximally decreased uncoupling of the inner membrane 
(Hockenbery et al. 1990; Alavian et al. 2011; Chen et al. 2011). Therefore, Bcl-2 
family proteins could form part of a large protein complex that regulates inner mem-
brane coupling, and Bcl-xL might regulate not only the release but also the produc-
tion of ATP. In support of a role for Bcl-xL in the manufacture of ATP, hippocampal 
neurons overexpressing Bcl-xL show a large increase in cytoplasmic ATP levels. 
Surprisingly, this increase in ATP accompanies a decrease in neuronal oxygen 
uptake and glycolysis, consistent with an increase in mitochondrial bioenergetic 
efficiency (Alavian et al. 2011; Chen et al. 2011). Bcl-xL depletion reverses these 
effects on metabolism (Li et al. 2008; Alavian et al. 2011). Furthermore, direct inter-
action of Bcl-xL with the β-subunit of the ATP synthase maximizes the efficiency of 
ATP production (Alavian et al. 2011; Chen et al. 2011). These studies support a role 
for Bcl-xL in closing a leak channel within the inner membrane upon binding to the 
β-subunit of the ATP synthase.

Relative closure of a leak within the inner membrane in the presence of Bcl-xL 
aids actively firing neurons to increase neurotransmitter release (Li et  al. 2008, 
2013), consistent with a correlation between the increase in metabolic efficiency 
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and the long-term higher efficacy of synaptic transmission found in Bcl-xL- 
expressing neurons. In contrast, opening of the Bcl-xL-regulated inner membrane 
leak decreases metabolic efficiency and predisposes neurons to death. Neurons 
lacking Bcl-xL display a fluctuating mitochondrial inner membrane potential and a 
marked mitochondrial membrane depolarization in the presence of the ATP syn-
thase inhibitor oligomycin (Chen et al. 2011). These data support the idea that Bcl- 
xL regulates inner membrane coupling, prevention of energy failure, and cell death 
via direct effects on F1FO ATP synthase.

3.6.4  Cyclophilin D Binds to ATP Synthase and Regulates 
Permeability Transition

Another piece of the puzzle that helped determine the molecular components of 
mPTP was the discovery of the interaction between CypD and ATP synthase 
(Bernardi 2013). CypD is a chaperone protein and peptidyl-prolyl cis-trans isomer-
ase that resides in the mitochondrial matrix. It regulates the mPTP by enhancing its 
sensitivity to Ca2+. CsA inhibits PT by inhibiting cyclophilin D (CypD) (Crompton 
et al. 1988; Halestrap and Davidson 1990; McGuinness et al. 1990). CsA is still the 
gold standard of pharmacological tools to study the mPTP.

In 2005, experiments using CypD null mice demonstrated that CypD was not 
itself the pore of the mPTP but that it played an important regulatory role in the 
modulation of the mPTP by Ca2+ (Baines et al. 2005; Basso et al. 2005; Nakagawa 
et  al. 2005; Schinzel et  al. 2005). Four groups showed that deletion of CypD 
decreased sensitivity to ischemia-reperfusion injury in the heart and brain (Baines 
et al. 2005; Basso et al. 2005; Nakagawa et al. 2005), and the Molkentin group sug-
gested that the physiologic function of CypD regulation of mPTP is to maintain 
“homeostatic mitochondrial Ca2+ levels to match metabolism with alterations in 
myocardial workload” (Elrod et al. 2010).

CypD expression varies widely among cell types. CypD is more highly expressed 
in aging hearts, and these changes in expression may regulate its association with a 
complex of proteins that increase mPTP opening during reperfusion (Zhu et  al. 
2013). Furthermore, CypD activity appears to be regulated by cell signaling and 
metabolic pathways (Hafner et al. 2010; Shulga and Pastorino 2010; Shulga et al. 
2010; Di Lisa et al. 2011; Nguyen et al. 2011) and by developmental cues in dif-
ferentiating myocytes.

Recent data support the idea that CypD regulates mPTP by binding to F1FO ATP 
synthase. The propensity toward PT is regulated by ATP hydrolysis and synthesis in 
as much as this regulates the membrane potential. Therefore, PT requires twice the 
Ca2+ load in mitochondria that are in the process of hydrolyzing ATP (making a 
membrane potential) versus synthesizing ATP (dissipating the membrane potential) 
(Hunter and Haworth 1979a, b; Giorgio et al. 2013b). CypD binds to proteins on the 
stator of ATP synthase (OSCP, b-, and d-subunits, (Giorgio et al. 2009)) as well as 
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to the F1FO ATP synthase binding partners ANT (Crompton et al. 1998; Woodfield 
et al. 1998) and the phosphate carrier (PiC) (Leung and Halestrap 2008; Elrod et al. 
2010; Gutierrez-Aguilar et al. 2014). Recent work on the binding of CypD to ATP 
synthase suggests that binding occurs exclusively between CypD and OSCP, and 
depletion of OSCP using siRNA also depletes CypD (Giorgio et al. 2013b) suggest-
ing that the association regulates the expression of each protein. Interestingly, CsA 
decreases the propensity toward PT to the same degree (half) that decreases in 
OSCP expression increase the propensity toward PT (double), suggesting a privi-
leged inhibitory role of OSCP in PT (Giorgio et  al. 2013b). Third, purified ATP 
synthase dimers produce a current consistent with mPTP in artificial lipid mem-
branes (Giorgio et al. 2013b). The single-channel activity of this current has a maxi-
mal conductance of 1–1.3 nS with subconductance states. The current is not 
stimulated by Ca2+ or inhibited by CsA presumably because CypD is not present in 
the purified dimer preparation although the enzymatic activity of the F1FO ATP syn-
thase is preserved. The ATPase dimer current is also not sensitive to bongkrekic acid 
or atractyloside, agents that primarily affect ANT activity, making it unlikely that 
ANT forms part of the pore of the channel (Giorgio et al. 2013b). These data empha-
size the idea that the regulation of the mPTP may occur via the interaction of CypD 
and other molecules with F1FO ATP synthase and its binding partners.

3.6.5  PT Activity Regulates Cardiac Development

A third line of evidence that helped unravel the identity of the mPTP was a series of 
studies of mitochondrial function during cardiac development. As described above, 
previous understanding held that opening of the mPTP was a devastating event that 
triggers cell death. However, over the last two decades, data have emerged suggest-
ing that transient opening of the mPTP could serve a physiologic purpose. Some of 
these data in neurons have been discussed in this chapter, but additional data dem-
onstrate that transient mPTP opening occurs in many other cell types (Crompton 
1999; Huser and Blatter 1999; Petronilli et al. 1999; Hausenloy et al. 2004; Wang 
et al. 2008; Korge et al. 2011).

In the heart, physiologic variations in mPTP activity play a critical role in cardiac 
myocyte differentiation and cardiac development. Mitochondria in cardiac myo-
cytes from adult hearts display transient depolarizations that may be associated with 
“superoxide flashes,” and these depolarizations occur more often in neonatal myo-
cytes (Wang et al. 2008). Interestingly, developmental studies demonstrate that the 
mPTP is open in myocytes in the early embryonic mouse heart, and this opening is 
not associated with any form of cell death. However, by the mid-embryonic stage, 
the mPTP is closed (Hom et al. 2011). This closure coincides with activation of 
complex I of the electron transport chain, assembly of electron transport chain 
supercomplexes called respirasomes, and activation of oxidative phosphorylation 
(Beutner et  al. 2014). These changes cause a fall in mitochondrial-derived ROS 
that  signals the myocyte to undergo further differentiation (Hom et  al. 2011). 
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Furthermore, pharmacologically inhibiting mPTP or genetically inhibiting CypD 
enhances myocyte differentiation, while opening mPTP inhibits differentiation 
(Hom et  al. 2011). These findings have been confirmed in cardiac stem cells 
(Fujiwara et al. 2011; Cho et al. 2014), and various reports have stressed the impor-
tance of the mPTP during cardiac development and myocyte differentiation 
(Drenckhahn 2011; Folmes et al. 2012).

3.6.6  Regulatory Molecules Do Not Form the Pore of mPTP

The F1FO ATP synthase interacts with a large number of proteins many of which 
have been candidates for mPTP. ANT was an early candidate to form the mPTP 
since atractyloside and bongkrekic acid, which inhibit ANT, affect the mPTP 
(Hunter and Haworth 1979b) and ANT was found to interact with CypD (Halestrap 
and Davidson 1990). VDAC was also an early candidate to form the mPTP due to 
its high conductance and its association with ANT in immunoprecipitation experi-
ments (Crompton et al. 1998). In addition, it was shown that a complex of ANT, 
VDAC, hexokinase, and mitochondrial creatine kinase (mtCK) could form high- 
conductance pores when reconstituted into membranes (Beutner et  al. 1996, 
1998). Finally, the PiC is a more recent candidate to form the mPTP (Leung and 
Halestrap 2008).

However, genetic deletion of ANT1 and 2 and of the PiC demonstrated that these 
proteins were not essential to mPTP formation, but that they served regulatory roles 
(Kokoszka et  al. 2004; Gutierrez-Aguilar et  al. 2014; Kwong et  al. 2014). 
Furthermore, deletion of VDAC did not affect pore formation (Baines et al. 2005). 
Additional data suggest that the conformation of ANT may be important for regula-
tion of the mPTP (Gunter and Sheu 2009). Atractyloside induces mPTP opening 
and is known to stabilize the “c” conformation of ANT, such that the adenine nucle-
otide transport site faces the “cytoplasmic”, or intermembrane space, side of the 
inner mitochondrial membrane (Gunter and Sheu 2009). In contrast, bongkrekic 
acid prevents mPTP opening and stabilizes ANT in its “m,” or “matrix” facing con-
formation (Gunter and Sheu 2009). However, as both ATR and BKA inhibit ANT, it 
is unlikely that specific effects on ADP/ATP translocation regulate the mPTP, and a 
more likely scenario is that the conformation of ANT itself can regulate the mPTP.

The details of how these candidate molecules regulate the mPTP are not yet fully 
known, but evidence suggests that they participate as part of a large macromolecular 
structure with F1FO ATP synthase in the inner mitochondrial membrane. ANT and 
PiC form a complex with F1FO ATP synthase called the synthasome (Chen et al. 
2004). In addition, the complex of ANT, VDAC, hexokinase, and mtCK is likely 
also involved in the regulation of ATP synthesis (Beutner et  al. 1996, 1998). 
Therefore, each regulatory molecule may alter the structure and/or activity of F1FO 
ATP synthase, and, in so doing, modulate the opening of the mPTP.

Another mitochondrial inner membrane carrier, SGP7, a subunit of the mito-
chondrial m-AAA protease, has more recently been considered for its role in mPTP 
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(Shanmughapriya et al. 2015). m-AAA proteases preserve mitochondrial proteosta-
sis, morphology, and OXPHOS activity. Mutations in the protease lead to neurode-
generation in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia 
(HSP7). Although depletion of SGP7 in cells was found to inhibit cell death, sur-
prisingly, this protection was superior to the death protection of CsA, suggesting 
that another kind of cell death apart from mPTP could be interfering with the assay.

Regarding the role of SGP7 in permeability transition, it has been suggested pre-
viously that loss of the protease increases the propensity for PT (Maltecca et al. 
2015). A recent report of an inducible expression of the dominant negative of 
AFG3L2 confirmed this (Konig et al. 2016), suggesting that the m-AAA proteases 
control the levels of partners of the mitochondrial Ca2+ uniporter (MCU). One of 
these partners is EMRE, a chaperone molecule that links MICU to MCU so that 
MICU may act as a gatekeeper to prevent mitochondrial Ca2+ overload. In the 
absence of functional AFG3L2/SGP7 heteromers, the EMRE/MCU complex goes 
into operation without MICU, leading to mitochondrial Ca2+ overload, mPT, and 
cell death. Therefore, depletion of the m-AAA proteases led to early PT, in contra-
distinction to the findings of Shanmughapriya et al.

3.7  The mPTP, a Molecular Definition

3.7.1  The c-Subunits of ATPases Form Pores

Many reports suggest that F1FO ATP synthase is a major factor in the formation of 
the mPTP. Recent evidence suggests that the FO or membrane portion of F1FO ATP 
synthase in fact forms the pore (Bonora et  al. 2013, 2014; Alavian et  al. 2014; 
Azarashvili et  al. 2014; Chinopoulos and Szabadkai 2014; Karch and Molkentin 
2014) (Figs. 3.2 and 3.3). Mammalian F1FO ATP synthase is a ~600 kDa complex of 
15 subunits. The membrane portion, or FO, contains a ring of eight very hydropho-
bic c-subunits and subunits a, b, e, f, g, and A6L. A stalk composed of the δ, ε, and 
γ subunits connects the c-subunit ring to the catalytic F1 component made of a hex-
amer of alternating α- and β-subunits, where ATP synthesis and hydrolysis occur. 
Finally, a stator containing the b, d, F6, and OSCP subunits connects the lateral 
portion of FO to the top of the F1. Movement of protons between the c-subunit and 
the a-subunit causes rotation of the c-subunit ring, the energy of which is transferred 
to F1 to synthesize ATP (Pedersen 1994; Carbajo et al. 2005; Wittig and Schagger 
2009; Jonckheere et al. 2012; Walker 2013).

Rat brain and heart mitochondrial F1FO ATP synthase complexes undergo age- 
dependent structural and functional alterations (Guerrieri et al. 1992). The Fo por-
tion is present in the absence of an equivalent complement of F1 at 3 months of age 
in heart mitochondria. Levels of F1 then increase from 3 to 12 months as ATPase 
activity increases, and this accompanies a decrease in proton leak secondary to 
binding of F1 to FO. Decreases of F1 content with respect to that observed for FO are 
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Fig. 3.3 Proposed model of the location of the mPTP pore and its gating. The F1 or enzymatic 
portion of the F1FO ATP synthase serves as the gate of the channel, which resides in the FO (within 
the c-subunit ring). Upon Ca2+ influx into the matrix, CypD assists the F1 to lift off of the FO, expos-
ing the mouth of the pore which then conducts ions

Fig. 3.2 Proposed model of enhanced efficiency of ATP production during synaptic plasticity. F1 
of the F1FO ATPase moves more closely toward the FO of the ATP synthase in the presence of Bcl- 
xL, ATP binding to the β-subunit or CsA binding to OSCP. This closes an inner membrane leak, 
increasing the efficiency of ATP production by the ATP synthase and enhancing synaptic 
transmission
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detected in aging heart of 12–24-month-old animals, suggesting the presence of F1- 
lacking FO leak channels in the membranes of these aging mitochondria (Guerrieri 
et al. 1992).

Homologues of ATP synthase c-subunit are also present in the VO subcomplex of 
various vacuolar H+-ATPases, and VOV1-ATPase c-subunits line a water-accessible 
pore structure (Jones et al. 1995; Harrison et al. 2003) found both on the plasma 
membrane and on intracellular membranes (Mandel et  al. 1988; Finbow and 
Harrison 1997). VO c-subunits have also been shown to be involved in the formation 
of mega-channels in gap junctions between cells (Peters et al. 2001). Pore-forming 
ability, therefore, is an important feature of all homologous c-subunits which share 
similar amino acid sequence (Azarashvili et al. 2014).

The vacuolar ATPase’s proton pumping function is responsible for the acidifica-
tion of intracellular organelles including synaptic vesicles and lysosomal compart-
ments. V-ATPase F1 and FO sectors are known to disassemble and reassemble 
readily in response to changes in nutrient state of the intracellular milieu. In its 
“naked” state, the VO may serve as a channel (Couoh-Cardel et al. 2016). A recent 
report found that purified VO monomers of VATPase form rings of outer and inner 
diameters of 8.6 and 3.5 nm, respectively (Couoh-Cardel et al. 2016). A density 
seems to fill the ring, either made of lipid or of an arm (N-terminal alpha helix) of 
the c” isomer that forms one of the c8c’c” partner molecules of the c-ring. When 
reconstituted into planar lipid membranes, this VO c-ring forms voltage-dependent, 
multi- conductance rectified single-channel activity with an average single-channel 
conductance of 8.3 nS. The closings at negative potentials indicate that the positive 
or negative charges inherent in the c-subunit structure may move into the pore inte-
rior under polarized conditions. When the entire VO is reconstituted into a lipid 
bilayer, the single-channel conductances are considerably smaller, ranging between 
0.7 and 3.8 nS but averaging 1.8 nS. The d-subunit seemed to act as a gate in these 
recordings, particularly at negative potentials. At very positive potentials in holo VO 
recordings, in some cases the d- and aNT subunits appeared to dissociate com-
pletely from c-subunit, yielding a very large single-channel conductance similar to 
that recorded with purified c-subunit alone. These findings indicate that the 
c- subunit of VO forms a large pore that experiences voltage-dependent gating either 
by movement of its own charged moieties and/or by interacting with an arm and 
plug created by the aNT and d-subunits that move over the mouth of the pore to 
shut the channel.

In accordance with the findings for VO, the membrane portion of the F1FO ATP 
synthase may comprise a large conductance channel that could produce PT under 
stress. To help determine this, cell death was measured after depletion of all three 
c-subunit isoforms or after overexpression of a tagged version of the wild-type 
c-subunit in HeLa cells (Bonora et al. 2013). Cell lines are able to utilize glycolysis 
for ATP production in normal glucose-containing medium; therefore depleting the 
c-subunit did not diminish ATP levels in the cells. In contrast, c-subunit depletion 
prevented CsA-sensitive PT measured by calcein-cobalt quench and mitochondrial 
morphological changes typical for PT. Furthermore, c-subunit depletion markedly 
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attenuated H2O2-induced cell death and glutamate-induced excitotoxicity in neu-
rons, suggesting that the c-subunit was required for PT.

Although the above study indicated that the F1FO ATP synthase c-subunit was an 
important component of the mPTP (Bonora et al. 2013), this work did not directly 
determine what portion of ATP synthase could form the pore of the mPTP. CypD 
and Bcl-xL interact with the stator and β-subunit of ATPase, respectively, and these 
proteins are membrane attached but not embedded. The channel or pore-forming 
subunits, however, must span the mitochondrial inner membrane. Nine polypeptides 
form the FO and the stator, but only three, a, b, and c, are required for proton trans-
location and are evolutionarily highly conserved, like PT. In addition, ρ0 cells that 
lack mitochondrial DNA do not contain an a-subunit but do undergo PT. Attention 
focused on the c-subunit, and not on the b-subunit, because the mitochondrial 
c- subunit had been shown previously to express ion channel activity (McGeoch and 
Guidotti 1997). The mammalian c-subunit undergoes conformational changes from 
an α-helix to a β-sheet when in contact with water, forming the walls of ion channels 
(McGeoch and McGeoch 2008) with a diameter of 2.3 nm allowing molecules up to 
1.5 kDa to pass, similarly to PT.

3.7.2  The c-Subunit of ATP Synthase Creates a High- 
Conductance mPTP Pore

Recent experiments have directly tested the hypothesis that the main membrane 
embedded portion of mammalian F1FO ATP synthase, i.e., the c-subunit ring, forms 
the pore of the mPTP (Alavian et al. 2014; Azarashvili et al. 2014). Indeed, electro-
physiological recordings of the purified mitochondrial c-subunit yield a multi- 
conductance, voltage-dependent channel with prominent subconductance states 
(Alavian et  al. 2014). Patches contain a ∼100-pS conductance in 150 mM KCl, 
which appears to be a subconductance state of a larger activity rather than a separate 
conductance. Recordings also reveal peak single-channel conductances of ∼1.5–2 
nS, similarly to activity described previously for the mitochondrial multiple con-
ductance channel (MCC) (Kinnally et al. 1989). Also consistent with MCC, channel 
activity often but not always demonstrates negative rectification. At extreme posi-
tive patch pipette potentials of over 100 mV, single-channel conductances of ∼1.5 
nS and ∼2 nS, are consistently observed. Single-channel events and gating are more 
likely to occur at positive potentials most likely because of the negative rectifica-
tion, in keeping with previous reports for the mPTP (Petronilli et al. 1989).

Voltage dependence is an inherent property of the channel (Borjesson and Elinder 
2008) and is not dependent on the mitochondrial inner membrane potential or on the 
solutions used to record the currents. When measured by varying the voltage across 
the membrane (the command or holding voltage), recent I–V plots on the purified 
c-subunit prove consistent with previously reported I–V plots of the mPTP currents 
(Kinnally et al. 1989; Petronilli et al. 1989; Alavian et al. 2014).
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3.7.3  F1 Regulates Biophysical Characteristics of the Purified 
c-Subunit

Purified c-subunit protein reconstituted into liposomes clearly lacks extrinsic regu-
latory moieties that are important for mPTP opening. The effects of Ca2+, a critical 
regulatory molecule, demonstrate this property. Ca2+ binding sites have not been 
detected in mitochondrial FO, perhaps because mammalian c-subunits lack the for-
myl Met at the N-terminus to which Ca2+ binds to E.coli or chloroplast F1FO ATP 
synthase c-subunits (Zakharov et al. 1996). In contrast, Ca2+ binds to specific, low- 
affinity, and moderate capacity sites on the β-subunit of F1 ATP synthase (Hubbard 
and McHugh 1996). Other sites in other ATP synthase-interacting molecules may 
also be important for regulation by Ca2+ and other agents (Beutner et  al. 1996, 
1998). Therefore, although the new models of the mPTP pore must account for all 
inducers and inhibitors, these molecules may not interact directly with the c-subunit 
pore itself, but may instead bind to sites in the F1 or to other molecules such as ANT 
and CypD that undergo structural rearrangements upon opening and closing of the 
pore.

In order to determine the location of the regulators, mitochondrial recordings 
were carried out using purified mitochondrial and F1FO ATP synthase preparations. 
In these studies, the absence of an effect of a modulator was taken as an indication 
that the ligand or binding site for that modulator had been removed by the purifica-
tion process. For example, since in mitochondria or isolated inner membrane prepa-
rations Ca2+ activates the c-subunit leak channel while CsA and ATP/ADP inhibit it, 
the Ca2+ and CsA-sensitive sites must be present in these preparations. In contrast, 
removal of the F1 and other peripheral membrane proteins by urea treatment of the 
inner membrane or removal of CypD by purification of ATP synthase monomers 
abrogates regulation of the c-subunit channel by CsA and Ca2+ and greatly dimin-
ishes sensitivity to ATP/ADP. These studies suggest that the CypD/calcium binding 
site is contained within or associated with the F1 portion of the ATP synthase and 
that a second, low-affinity ATP binding site exists in the FO (Alavian et al. 2014). 
These results are consistent with reports identifying the binding site of CypD and 
benzodiazepine 423, an ATP synthase-inhibitory and mPTP-sensitizing agent, on 
OSCP (Giorgio et  al. 2009, 2013a), and suggest that the assembly of F1FO ATP 
 synthase into monomers, dimers, and higher-order oligomers can regulate the for-
mation of the mPTP.

Channel activity of the purified c-subunit is inhibited by the purified F1, suggest-
ing a structural rearrangement, whereby the stalk and F1 of the ATP synthase inhibit 
opening of the c-subunit channel, aided by ADP/ATP/Bcl-xL binding to the 
β-subunit and opposed by CypD/Ca2+ interaction with OSCP (Fig. 3.2). Mitochondria 
treated with Ca2+ have a destabilized connection between the stalk and the c- subunit, 
disrupting protein/protein interaction between the c-subunit and F1 (Fig.  3.3). A 
model incorporating these findings suggests that the channel of the mPTP forms 
within the c-subunit ring upon CypD and Ca2+-dependent movement of the stalk 
away from the c-subunit (Alavian et al. 2014).
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Loss of protein/protein interaction between F1 and FO requires fairly mild condi-
tions such as 60 μM Ca2+ in the bath to initiate PT (Alavian et al. 2014). This con-
centration is well within the range of physiological Ca2+ concentrations found 
within the mitochondrial matrix (Rizzuto et al. 2000; Csordas et al. 2001; Rizzuto 
and Pozzan 2006) or concentrations measured adjacent to the mitochondria in Ca2+ 
microdomains at the plasma membrane or ER membrane (Schneggenburger and 
Neher 2005; Rizzuto et al. 2009). Destabilization of the F1 and FO connection is 
likely to be reversible such as has been shown upon chelation of Ca2+ in mitoplasts 
(Beutner et al. 1998), intact mitochondria (Roestenberg et al. 2012), intact neurons 
(Jonas et al. 1999), as well as in reconstituted dimers of F-ATP synthase (Gomez 
et al. 2007). Therefore the F1 and the c-subunit may recombine to close the mPTP, 
reforming intact F1FO ATP synthase and reinitiating enzymatic function (Pedersen 
and Hullihen 1978). However, under certain conditions, this separation may become 
irreversible, forming pathophysiologic PT (with MOMP).

Another possible regulatory molecule is the ATPase inhibitory factor 1 (IF1), a 
small, nuclear-encoded endogenous polypeptide, which is involved in the regulation 
of the oligomeric state of the F1FO ATP synthase by facilitating enzyme dimeriza-
tion of two F1 domains (Garcia et al. 2006). IF1 is also known as an intrinsic inhibi-
tor of the ATP synthase. It interacts with the catalytic β-subunit of ATP synthase and 
is responsible for inhibiting ATP hydrolysis but not synthesis. The binding of IF1 is 
pH dependent, and below neutrality its inhibitory activity increases (Cabezon et al. 
2001). IF1 plays a protective role during hypoxic/ischemic conditions, when the 
electrochemical gradient across the membrane collapses and the enzyme switches 
from ATP synthesis to hydrolysis (Pullman and Monroy 1963; Jennings et al. 1991; 
Rouslin 1991). The absence of IF1 has been linked with the human pathological 
condition known as Luft’s disease, characterized by densely packed mitochondrial 
cristae and significantly high ATPase rate (DiMauro et al. 1976; Yamada and Huzel 
1992). IF1 expression is increased in many human carcinomas, supporting its anti-
apoptotic and potentially tumorigenic role (Bravo et al. 2004; Sanchez-Cenizo et al. 
2010). It protects cells from necrotic and apoptotic cell death by regulating mito-
chondrial cristae morphology, promoting the dimerization of ATP synthase, limiting 
release of Cyt c, and preventing the activation of Drp1 and oligomerization of pro-
apoptotic Bax (Campanella et al. 2008; Faccenda et al. 2013a, b).

Additional regulation of the mPTP may be due to the association of other mole-
cules with F1FO ATP synthase. As discussed above, F1FO ATP synthase may complex 
with ANT and PiC.  In the study of F1FO ATP synthase dimers, bongkrekic acid, 
which inhibits ANT, fails to attenuate the mPTP channel activity (Giorgio et  al. 
2013b); this is recapitulated in studies of SMVs (Alavian et al. 2011). Therefore, the 
regulation of the mPTP by ANT and PiC may occur through their association with 
the peripheral membrane components of F1FO ATP synthase. Furthermore, the asso-
ciation of F1FO ATP synthase and ANT with PiC, mtCK, VDAC, and hexokinase 
may explain why mPTP regulation can occur via these molecules.

Some regulators of the mPTP also work directly on the F1FO ATP synthase itself. 
F1 has binding sites that accommodate the effects of Ca2+, Mg2+, adenine nucleotides 
and Pi; and through CypD (un)binding those of H+, CsA, and possibly of oxidants 
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(Kruse et al. 2008). Therefore, in summary, the new model of mPTP explains either 
direct or indirect interaction with all known inducers, inhibitors, and modulators of 
pore function (Figs. 3.2 and 3.3).

3.7.4  Structural Location of the Pore 
Within the c-Subunit Ring

The exact location of the ion-conducting pore of the c-subunit is becoming increas-
ingly understood. Although it has been proposed that the pore sits between the two 
lateral stalks of a dimer of F1FO ATP synthases and not within the c-subunit ring 
(Giorgio et al. 2013b), there is currently no electrophysiological evidence for the 
formation of such a channel, and regulation of the mPTP by components of F1 
(Giorgio et al. 2013b; Alavian et al. 2014, 2015) argue against this.

Rather, it is likely that the leak is located either within the central portion of the 
c-subunit ring, between the individual c-subunit monomers, or between the c- subunit 
and the other FO subunits, although the latter is less likely given the presence of PT 
in ρ0 cells that lack both mitochondrial DNA and the a-subunit (Bonora et al. 2013). 
In two separate experiments, it has been demonstrated that the c-subunit ring 
expands when it conducts ions, making it likely that the pore is formed by the 
c- subunit ring. The first experiment used fluorescent tetracysteine display. These 
studies showed that Ca2+ influx into cells causes an expansion of the diameter of the 
c-subunit ring, while CsA decreases ring diameter (Alavian et al. 2014). Mutagenesis 
to increase the diameter of the c-subunit ring also demonstrates that ring expansion 
is a means to increase conductance. (Norris et al. 1992; Alavian et al. 2014).

These findings support the hypothesis that the c-subunit is necessary and suffi-
cient to produce the pore of mPTP. Although it has been suggested that phospholip-
ids occupy the central cavity of the c-subunit ring in F1FO ATP synthases from 
different species (Meier et al. 2001; Oberfeld et al. 2006; Matthies et al. 2009), other 
evidence provides for formation of a proteolipid or proteophospholipid channel 
structure within the central lipid region (Pavlov et al. 2005; Abramov et al. 2007; 
McGeoch and McGeoch 2008; Elustondo et  al. 2013; Azarashvili et  al. 2014). 
Recent single-particle cryo-EM data also suggest that subunit e, DAPIT, or subunit 
6.8 kDa may form a p-side density (PD) adjacent to the c-subunit pore within the 
structure of the bovine ATP synthase (Gerle 2016). The PD extends from the mem-
brane adjacent to the c-ring toward the pore region of the c-ring. The part of the PD 
sitting in the membrane also contacts OSCP/b subunits in the peripheral stalk or 
stator part of the molecule, enhancing the possibility that PD movement could be 
regulated by conformational changes induced from the top of the α3β3 hexamer 
through OSCP and b and eventually to the PD. These arrangements would fit with 
data suggesting that Ca2+/Mg2+ and ATP binding to the F1 affect gating of the 
mPTP. These data also support a model whereby strain is relieved on the ATP syn-
thase by dimer and oligomer formation (Davies et al. 2012), making it more likely 
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that monomeric ATP synthase would be predisposed to allow the PD to pull the 
lipids out of the central pore.

The data suggest a working model whereby the c-subunit pore forms within the 
proteolipid milieu upon activation of mPTP (e.g., by elevated matrix Ca2+) where-
upon the ring expands and F1 shifts; the pore is closed by a decrease in diameter of 
the ring and inactivated by binding of the F1 components to the ring (Figs. 3.2 and 
3.3). The details of these changes and their regulation remain a work in progress.

3.8  mPTP Opening in Acute Neuronal Ischemia

3.8.1  Ischemia Triggers the Excitotoxic Pathway

Cerebral ischemia is a condition of insufficient blood and oxygen supply to the 
brain that causes neuronal energy deficits. This condition impairs ATP-dependent 
transporters that regulate ionic homeostasis in the neurons and allows uncontrolled 
ion influx, especially Ca2+ into the neuronal cytoplasm (Meyer 1989; Schwab et al. 
2002; Bano et al. 2005). Ca2+ influx through glutamate receptors produces excito-
toxicity in neurons (Choi 1987; Nishizawa 2001; Szydlowska and Tymianski 2010) 
resulting in structural and functional strain on intracellular organelles including 
mitochondria (Lo et al. 2003).

3.8.2  mPTP Mediates Neuronal Death in Ischemia

Ischemic insults impair electron transport which causes a deterioration in intracel-
lular energy metabolism, production of reactive oxygen species (ROS) from mito-
chondrial proteins such as complex I and complex III (Massaad and Klann 2011; 
Holmstrom and Finkel 2014), and opening of mPTP (Baines 2009; Jonas 2009; 
Bernardi and Di Lisa 2015). Opening of mPTP disrupts mitochondrial membrane 
integrity, allows activation of glutathione (Reed and Savage 1995), and produces 
leakage of death-promoting factors (Du et al. 2000; Verhagen et al. 2000; Petronilli 
et al. 2001).

In contrast to the protective roles of Bcl-xL in synaptic function, neuronal sur-
vival, and mPTP regulation, Bcl-xL is also capable of initiating death signaling in 
ischemic brain. The formation of a caspase-dependent N-terminal cleavage prod-
uct of Bcl-xL (ΔN-Bcl-xL) (Clem et al. 1998; Fujita et al. 1998; Seng et al. 2016) 
is enhanced during cerebral ischemia in rodent models, and strategies to prevent 
ΔN-Bcl-xL formation protect the brain against ischemia-induced injury (Miyawaki 
et al. 2008; Ofengeim et al. 2012). ΔN-Bcl-xL is missing a BH4 domain that exerts 
antiapoptotic function in full length Bcl-xL (Hirotani et al. 1999; Sugioka et al. 
2003). Therefore, ΔN-Bcl-xL exhibits pro-death characteristics. Injection of 

3 The Mitochondrial Permeability Transition Pore: Molecular Structure…



88

ΔN-Bcl-xL induces large multi-conductance channels in the mitochondrial mem-
brane but not the plasma membrane and causes synaptic depression (Jonas et al. 
2004; Hickman et al. 2008). In addition, application of a caspase inhibitor pre-
vents hypoxia-induced mitochondrial channel activity and improves synaptic 
responses (Jonas et al. 2005) indicating that ΔN-Bcl-xL works in part to cause loss 
of mitochondrial membrane potential, suggesting loss of energy and attenuated 
Ca2+ buffering capacity. Since full length Bcl-xL binds with ATP synthase (Alavian 
et al. 2011; Veas-Perez de Tudela et al. 2015) and ATP synthase undergoes confor-
mational changes that favor closing mPTP (Alavian et al. 2011, 2014a), by anal-
ogy ischemia- induced ΔN-Bcl-xL formation may interfere with mPTP closure by 
sequestering functional Bcl-xL, preventing full length Bcl-xL interaction with 
ATP synthase.

Ischemia also changes the dynamics of other Bcl2 family proteins that may reg-
ulate mPTP. Ischemic stimuli activate death receptors that release initiator caspases 
(Matsushita et al. 2000; Broughton et al. 2009; Park et al. 2015) and activate pro- 
death BH3-only molecules and pro-apoptotic Bax (Li et al. 1998; Luo et al. 1998; 
Lindsten et al. 2000). Pro-apoptotic Bid cleavage appears in both an in vitro oxygen 
glucose deprivation model and in an in vivo middle cerebral artery occlusion model. 
Bid and Bax interact with possible mPTP regulators such as ANT and VDAC 
(Narita et al. 1998; Shimizu et al. 1999; Brenner et al. 2000; Zamzami et al. 2000; 
Cao et  al. 2001) further supporting a regulatory role of Bcl2 family proteins in 
mPTP during ischemia.

3.8.3  Strategies to Block mPTP in Ischemic Models

Due to the significance of mPTP in ischemia-induced neuronal death, blockade of 
mPTP has been suggested to protect the brain from ischemic insults. CypD-
depleted mitochondria are more resistant to Ca2+-induced mitochondrial swelling 
in vitro, and CypD-deficient mice show significantly decreased infarct size after 
middle cerebral artery occlusion-induced brain injury in vivo (Schinzel et al. 2005). 
CsA protects the brain from ischemia-induced mPTP opening (Matsumoto et al. 
1999). However, another series of studies have reported that depletion of CypD 
does not completely eliminate mPTP (Basso et al. 2005; Nakagawa et al. 2005; 
Baines et al. 2007).

Since PT occurs acutely during excitotoxicity or high ROS during brain or car-
diac ischemia (Baines 2009), this predicts that genetic depletion of the c-subunit 
may prevent PT. Indeed, excitotoxic and ROS-induced cell death is greatly attenu-
ated upon depletion of the c-subunit by shRNA in neurons and other cells (Bonora 
et al. 2013; Alavian et al. 2014); cell death protection by c-subunit depletion is not 
further attenuated by CsA, suggesting that the c-subunit forms the inner mitochon-
drial membrane target of the CsA-sensitive complex (Alavian et al. 2014). In contrast 
to c-subunit depletion, overexpression of the wild-type c-subunit (Bonora et al. 2013) 
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or mutation of the c-subunit to form a high-conductance leaky c-subunit (Alavian 
et al. 2014) predisposes to enhanced cell death upon excitotoxic or ROS stimula-
tion. Death under these conditions is not sensitive to CsA, presumably because the 
leaky pore prevents normal regulation by components of F1. Despite the powerful 
neuroprotective property of ATP synthase c-subunit depletion against an ischemia-
like environment such as excitotoxic and oxidative stress in  vitro (Bonora et  al. 
2013; Alavian et al. 2014), knocking down the c-subunit of ATP synthase has not yet 
been fully explored in an in vivo ischemic model. Therefore, further investigation is 
required to address mPTP as a therapeutic target of ischemic brain disease.

3.9  mPTP in Neurodegenerative Disease

3.9.1  Alzheimer’s Disease and the mPTP

Unremitting metabolic demand on neurons throughout life can lead to high neuro-
nal stress, which contributes to the development of neurodegenerative diseases. 
Mitochondrial dysfunction, which is often accompanied by protein misfolding and 
the release of proapoptotic factors, can be used as a marker for the development of 
neurodegenerative diseases (Schon and Manfredi 2003).

The hallmark feature of Alzheimer’s disease (AD) in brain pathology is the 
extracellular plaque containing Aβ peptide, the result of exuberant APP process-
ing. Aβ has the ability to penetrate both the outer and inner mitochondrial mem-
branes through the translocase of the outer and inner membrane (TOM and TIM) 
complexes (Reddy 2009; Cadonic et al. 2015). Aβ binds to heme groups in the first 
four complexes of the electron transport chain (ETC), preventing these groups 
from performing their redox functions (Atamna and Frey 2004). Aβ also binds to 
amyloid beta binding dehydrogenase (ABAD), impairing complex IV’s enzymatic 
activity (Rao et  al. 2014) and causing increased production of reactive oxygen 
species (ROS). In addition to the calcium overload of the cytosolic compartment 
common in affected neurons in AD, this leads to further mitochondrial deteriora-
tion (Supnet and Bezprozvanny 2010). Aβ also depolarizes the IMM directly 
(Qiao et  al. 2005; Cha et  al. 2012), leading to a functional uncoupling. These 
abnormalities of mitochondria caused by Aβ are associated with early opening of 
the mPTP (Du et al. 2010).

Reports have suggested that Aβ’s interaction with CypD is a trigger for mPTP 
formation (Du et al. 2008). CypD expression increases in areas of the brain that are 
most adversely affected by AD (Du et al. 2010, 2014; Du and Yan 2010; Guo et al. 
2013). Comparing CypD expression in wild-type and Aβ-containing cortical mito-
chondria from humans and the mAPP mouse model of AD, it is clear that in both the 
temporal pole and hippocampus, Aβ-containing mitochondria express significantly 
higher levels of CypD than wild-type mitochondria. CypD expression levels in 
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mAPP mouse brains increase over time in comparison to those of non-transgenic 
mice, consistent with progression of neurodegeneration (Du and Yan 2010).

Through in vitro binding assays, it has been shown that oligomeric Aβ40 and 
Aβ42 bind to recombinant human CypD protein with high affinity (Du et  al. 
2010), prevented by antibodies targeting Aβ or CypD. CypD and Aβ form a com-
plex in mAPP mouse brain and human brain tissue affected by AD (Du et al. 2008) 
but not in age-matched wild-type mouse brains and control human brain tissue 
(Du et al. 2008.

CypD-induced mPTP may also impair other mitochondrial functions in AD brain 
including calcium handling, membrane potential, and ROS regulation. From 3 to 24 
months, the calcium buffering capacity of mAPP, in comparison to non-transgenic 
mice, decreases at a much faster rate. Interestingly, mAPP mice lacking CypD 
(mAPP/Ppif−/−) surpass even the age-matched non-transgenic mice in calcium 
uptake (Du and Yan 2010), which suggests that loss of CypD may protect against 
both AD and the aging phenotype. Additionally, mAPP mice treated with CsA 
exhibit a markedly improved increase in calcium uptake ability and improvement on 
learning and memory tasks (Du and Yan 2010). CypD-induced mPTP opening also 
alters heme metabolism, increases ROS decreases ATP production (Reynolds 1999; 
Blanchard et al. 2002; Atamna and Frey 2004).

One mechanism behind the CypD-Aβ-induced mPTP opening may be related to 
the Bcl-2 family of proteins (Chen et al. 2015; Veas-Perez de Tudela et al. 2015). 
The mitotic protein cyclin B1 accumulates aberrantly in damaged mitochondria in 
degenerating neurons, activating cyclin-dependent kinase-1 (Cdk1) which phos-
phorylates Bcl-xL, leading to dissociation of Bcl-xL from the β-subunit of ATP syn-
thase, inhibition of ATP synthase enzymatic activity, mitochondrial membrane 
depolarization, and neuronal death (Veas-Perez de Tudela et al. 2015). In contrast, 
Bcl-xL protects axons from degeneration in neurons undergoing Aβ-induced toxic-
ity (Alobuia et al. 2013). Aβ may also bind to the ATP synthase directly, disrupting 
interaction of ATP synthase with other enzyme systems that normally enhance 
enzymatic rate, thereby impairing ATP synthesis (Cha et al. 2015).

3.9.2  Relationship of Synaptic Mitochondrial Channel Activity 
to Long-Term Depression of Synaptic Responses 
During Neurodegeneration

Long-term synaptic depression (LTD) caused by low-frequency stimulation or by 
cell signaling is a normal mechanism of synaptic plasticity opposite in some ways 
to long-term potentiation (LTP), the latter of which is brought on by high-frequency 
stimulation (Malenka and Bear 2004). Despite its role in normal synaptic plasticity, 
however, long-term depression can also serve as a marker for a pre-degenerative 
synaptic state. In hippocampal CA3 to CA1 synapse, low synaptic activity leads to 
a long-lasting decline in synaptic efficacy, brought about in part by removal of 
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postsynaptic receptors (Malinow and Malenka 2002; Malenka and Bear 2004); this 
state can be quite stable and may never lead to somatic demise. Mitochondria are 
important for a form of LTD associated with normal synaptic plasticity in hippo-
campal CA1 neurons. In this form of physiological LTD in the CA1 dendrite, low-
frequency activity causes Bcl-xL-sensitive mitochondrially mediated release of 
cytochrome c followed by low-level activation of caspase 3, which leads to the 
removal of postsynaptic glutamate receptors from the plasma membrane (Li et al. 
2010).

Despite the role of LTD in normal synaptic plasticity, age or developmentally 
related degenerative changes may be set in motion by prolonged synaptic depres-
sion. It is now well accepted that release of toxic Aβ from axonal endings decreases 
synaptic dendritic spine number in partner neurons, contributing to a decline in 
synaptic efficacy and loss of LTP (Wei et al. 2010). In synapses from Bax −/− mice 
treated with the toxic Aβ protein, prevention of LTP by Aβ was attenuated, implying 
that actions of the pro-apoptotic protein Bax at mitochondria may be necessary for 
the relative loss of synapses during Aβ-induced toxicity (Olsen and Sheng 2012; 
Erturk et al. 2014). In a model of developmental axonal targeting in spinal neurons, 
both mitochondrial Bax and caspase 6 activation were found to contribute to axonal 
loss in response to nerve growth factor withdrawal (Nikolaev et al. 2009). In this 
scenario, the N-terminus of amyloid precursor protein (APP) binds to death recep-
tor 6 (DR6) to initiate an intracellular cascade resulting in mitochondrial-dependent 
axonal demise.

The role of mPTP in neuritic and synaptic loss is inferred in a recent study of 
neurite growth arrest in cultured neurons depleted of Bcl-xL by siRNA. The work 
shows that declining Bcl-xL levels prevents normal outgrowth and branching of neu-
ronal processes over 4 weeks in culture before any somatic death occurs (Park et al. 
2014), associated with upregulation of death receptor 6 (DR6) and Bax. In contrast 
to the slowly occurring growth arrest found upon Bcl-xL depletion, loss of neurites 
takes place with a much more rapid timescale after a hypoxic stimulus. Hypoxia- 
induced loss is greatly attenuated in neurons by Bcl-xL and by depletion of DR6, 
suggesting reversal of detrimental metabolic changes and amelioration of relative 
opening of mPTP in dendritic and axonal mitochondria.

3.9.3  mPTP and Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 
after Alzheimer’s disease, affecting about 1% of the population. PD is characterized 
by the selective loss of dopaminergic neurons in the substantia nigra pars compacta 
(SNpc), deficiency of dopamine in the striatum, and the presence of excess α -synu-
clein protein in presynaptic neural cells (Banerjee et al. 2009). So far, several famil-
ial PD genes have been identified, notably α-synuclein (α-syn), Parkin, 
PTEN-induced putative kinase 1 (PINK1), leucine-rich repeat kinase 2 (LRRK2), 
and DJ-1 (Banerjee et al. 2009).
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In the past several decades, mitochondrial dysfunction has been implicated in the 
pathogenesis of PD. Most studies have focused on the mitochondrial respiratory 
chain, particularly complex1 dysfunction, but recent studies have highlighted the 
role of PINK1 and Parkin as key activators of mitophagy.

The mitochondrial permeability transition pore (mPTP) has received attention as 
a contributor to PD. It is reported, for example, that toxic MPP+, 6- hydroxydopamine, 
or dopamine strongly stimulates Ca2+ release from mitochondria and hydrolysis of 
intra-mitochondrial pyridine nucleotides. This is accompanied by cytochrome c 
release and mitochondrial membrane depolarization. Interestingly, these events are 
prevented by CsA. These findings comprise the first set of evidence linking Ca2+-
induced mPTP with PD-related cell death (Frei and Richter 1986; Cassarino et al. 
1999). Mitochondria isolated from CypD knockout mouse brain are less sensitive to 
MPP+-induced membrane depolarization, and these mitochondria are also rela-
tively protected from free radical generation compared to wild-type mice (Thomas 
et al. 2012). The ventral midbrain mitochondria from MPP+-treated CypD KO mice 
also exhibit less damage than those isolated from wild-type mice when judged by 
respiratory chain complex I activity, state 3 respiration rate, and respiratory control 
index (Thomas et al. 2012).

Recently, the Thy1-A53T hαSyn tg C57BL/6 mouse model was established 
(Martin et  al. 2014). These transgenic mice develop a severe, age-related, fatal 
PD-like movement disorder and robust brainstem neurodegeneration during devel-
opment (Martin et al. 2014). In this model, CypD level is modestly increased in the 
brainstem, striatum, and cortex of early and late symptomatic mice, whereas ANT 
and VDAC levels remain unchanged. Mitochondria appear aggregated and swollen 
in the SNc neurons. The disease onset of this Thy1-A53T tg mouse is significantly 
delayed when reducing the levels of CypD by genetic ablation, and the mouse lifes-
pan is extended. Given that CypD expression is positively correlated with mPTP 
opening, the model establishes a direct cause-effect relationship between the mPTP 
and PD disease mechanisms (Martin et al. 2014).

The above discoveries have also been confirmed in several other familial PD 
mouse models. It was reported that the mitochondrial transmembrane potential 
(ΔΨm) is reduced in PINK1−/− MEFs and neurons, and the reduction of ΔΨm in 
PINK1−/− cells is associated with increased opening of mPTP. It is also described 
that inhibition of mPTP reverses the depolarization of the mitochondrial inner 
 membrane and respiration defects seen in PINK1−/− cells (Gautier et al. 2012). 
Mitochondria from PINK1−/− mouse brain have altered Ca2+ storage capacity and 
increased mPTP opening (Rasola and Bernardi 2011).

Fibroblasts harboring PARK2 mutations from juvenile Parkinson’s disease (JPD) 
patients contain impaired mitochondria; ATP levels and ΔΨm are reduced (Zanellati 
et  al. 2015). In a twist on the story of Parkin targeting to mitochondria during 
mitophagy, in SH-SY5Y neuroblastoma cells, the Parkin protein instead departs the 
mitochondria and locates itself to other intracellular structures when treated with 
inhibitors of electron transport chain such as rotenone, mitochondrial uncouplers, 
and cell cycle blockers (Kuroda et al. 2006). This unusual scenario is brought on by 
opening of the mPTP under toxic conditions, and the study suggests that the removal 
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of Parkin from the mitochondria signals for transcription of mitochondrial proteins 
including those of ATP synthase (mitochondrial biogenesis).

DJ1 mutations cause a rare form of familial disease that accounts for only 1–2% 
of early onset PD.  Several studies demonstrate that the ATP concentration is 
decreased and mitochondrial transmembrane potential is reduced in the DJ-1 −/− 
MEFs, whereas mPTP opening is increased, measured by the calcein-cobalt assay 
(Giaime et al. 2012). Despite these tantalizing findings, so far, there is no direct 
evidence that connects selective nigrostriatal neuron death with mPTP opening. 
Nevertheless, considering the high metabolic demands placed on nigrostriatal neu-
rons, it is easy to understand why this type of neuron would be among the most 
susceptible cells to mPTP opening.

How mitochondrial failure triggers PD during slow degeneration is still unclear. 
Based on the current knowledge of mPTP in PD, therapeutic strategies by targeting 
mPTP might halt or slow the progression of PD. Some research groups have already 
started identifying novel mPTP inhibitors in small molecule libraries through unbi-
ased high-throughput screening (HTS) (Rasheed et al. 2016).

3.10  Conclusion

For many years investigators have sought to identify the molecular structure under-
lying acute alterations in mitochondrial morphology and increases in inner mem-
brane conductance associated with acute cell death known collectively as 
mitochondrial PT. Early evidence asserted that PT was caused by opening of an 
inner membrane ion channel. More recent data have shown that the c-subunit of the 
F1FO ATP synthase forms a channel with similar biophysical characteristics to 
mPTP but whose Ca2+, CsA, CypD, and Bcl-xL regulatory sites are contained in the 
F1 including the stator and the catalytic portions. Depletion of c-subunit isoforms in 
cells blocks CsA-dependent PT and subsequent cell death. Inhibitors and activators 
may also work through peripheral regulatory moieties such as ANT, PiC, and VDAC 
that exist in a large complex of proteins with the F1FO ATP synthase. Lipids and 
polyphosphates also may play an important role in pore gating or formation.

Activators of the mPTP appear to open the pore by a gating mechanism in which 
F1 moves away from the mouth of the c-subunit ring while the ring expands 
(Fig. 3.3). The process is reversible, perhaps due to binding of F1 components to the 
ring or by the reassociation of the entire F1 onto the ring (Fig.  3.2). Although a 
wealth of information regarding the molecular structure and regulation of mPTP has 
been unearthed recently, there is still much to be learned about this fascinating 
complex.

The study of mPTP in enhanced inner membrane coupling during development 
of oxidative phosphorylation, in aging and in supercomplex formation, comprises a 
rapidly changing field. In neurons, it is now becoming clear that the metabolic effi-
ciency of mitochondria regulates neuronal survival, neurotransmitter vesicle recy-
cling, and synaptic development. During neurodegeneration, metabolic inefficiency 
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within neurons or neuronal processes may lead to depression of synaptic responses, 
proapoptotic mitochondrial conductance changes, metabolic compromise, and 
eventual loss of neurite outgrowth accompanied by increases in the probability of 
mPTP opening. Ongoing studies will illuminate the molecular structural changes 
associated with mitochondrial channel activity during cell development, plasticity, 
and during stressful or degenerative events.
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Chapter 4
Mitochondrial Calcium Uptake in Activation 
of the Permeability Transition Pore and Cell 
Death

Maria E. Solesio and Evgeny V. Pavlov

4.1  Introduction

Calcium signaling is central for regulation of the multiple physiological processes 
in all living organisms. Cells are able to maintain significant gradients of calcium 
between extracellular media, cytosol, and various intracellular organelles. The pres-
ence of such gradients allows to rapidly change calcium concentration by opening 
of the specific calcium-selective channels and generate calcium signal event. Well- 
described examples of such calcium signaling events in mammalian organisms 
include excitation-contraction coupling in the muscle and neuronal synaptic signal 
transmission in the brain. Thus, disruption of normal calcium homeostasis can have 
profound negative impact on organism function. Further, uncontrolled increase in 
cytosolic calcium concentration not only prevents normal calcium signaling but can 
be direct cause of the cell death and result in tissue necrosis. Here we will discuss 
one specific mechanism of cell death induced by high calcium concentrations, 
which involves damaging effects of high calcium on the mitochondrial function. 
Specifically, we will review details of the cell death mechanisms linked to the 
calcium- induced activation of the mitochondrial permeability transition pore 
(mPTP). It is generally established that during calcium overload in such conditions 
as ischemia, mitochondria can accumulate abnormally high amounts of calcium. 
Eventually, such calcium overload leads to the increased permeability of the mito-
chondrial inner membrane  – permeability transition. Permeability transition is 
caused by the opening of the nonselective pore – permeability transition pore or 
mPTP. Further, we will review what is currently known about possible molecular 
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mechanisms responsible for two key events leading to the mPTP development: 
mitochondrial calcium uptake and activation of mPTP by calcium increase inside 
the mitochondria.

4.2  Calcium-Activated mPTP in Isolated Mitochondria 
and Its Relationship to In Vivo Processes

Investigation of the function of the isolated mitochondria was one of the first meth-
ods used by the field of mitochondrial physiology (Kennedy and Lehninger 1949). 
In this approach, first intact mitochondria are isolated from the whole animal tissues 
or cultured cells. Such isolated mitochondria maintain all their key activities includ-
ing respiration, ATP synthesis, and ion transport. The main advantage of this 
approach is that it allows to study mitochondrial function directly and indepen-
dently of other cellular processes. Very early experiments with isolated mitochon-
dria established that in the presence of orthophosphate, they are capable to 
accumulate significant amounts of calcium (Greenawalt et  al. 1964). It was also 
noted that following certain threshold of calcium accumulation, mitochondrial 
membrane became highly permeable (Haworth and Hunter 1979; Hunter and 
Haworth 1979a, b). This resulted in calcium release and mitochondrial swelling. 
Later size exclusion experiments confirmed that excessive calcium accumulation 
makes mitochondrial inner membrane to undergo permeability transition that allows 
free flux of the molecules up to 1,500 Da in size (Haworth and Hunter 1979). At the 
time of this discovery, it was not clear whether such calcium-induced increase in 
membrane permeability is an effect that only occurs in isolated mitochondria or has 
some pathological or physiological significance. This changed when it was demon-
strated that permeability transition can be significantly delayed by the immunosup-
pressant drug cyclosporine A (CSA) (Broekemeier et al. 1989). The use of CSA not 
only allowed to establish that this process can be regulated pharmacologically at the 
level of isolated mitochondria but also allowed to suggest that PTP might play an 
important role in cell pathology. Indeed, CSA not only inhibited PTP in isolated 
mitochondria but also prevented mitochondrial depolarization in the living cells 
(Halestrap et  al. 1997). Further, the use of CSA has shown protection against 
ischemia- reperfusion injury in human patients, suggesting that PTP plays important 
role in vivo and can also be a promising target for treatment against tissue damage 
caused by acute stress.

4.3  Mechanisms of Calcium Activation of mPTP

Since the discovery of mPTP, calcium activation remains the defining feature of this 
phenomenon. Despite many years of mPTP studies, the molecular mechanism of 
calcium activation of mPTP is not entirely understood. mPTP activation by calcium 
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doesn’t follow mechanisms characteristic to other calcium-induced physiological 
processes. Typically, calcium activation occurs through direct binding of calcium 
ion to the selective calcium binding site of the target molecule. In order for this 
process to occur, concentration of free calcium has to significantly increase. In case 
of mitochondria, however, the process of calcium activation seems to be different. 
mPTP activation requires accumulation of the large amounts of this ion in the mito-
chondrial matrix; however during this process, the concentration of free (bioavail-
able) calcium remains remarkably steady (Chalmers and Nicholls 2003). Thus it can 
be concluded that hypothetical mPTP calcium-sensing site does not directly respond 
to calcium increase. Most likely activation of mPTP by calcium is not direct but 
involves calcium-phosphate interactions. During increase in total calcium accumu-
lation inside mitochondria, it becomes buffered by orthophosphate. Thus, while bio-
available calcium remains constant, there is a significant increase in 
calcium-phosphate precipitates that appear as electron dense granules and can be 
detected by electron microscopy (Kristian et al. 2007). This suggests that calcium 
activation of mPTP does not involve direct binding of calcium to the putative cal-
cium binding site of the mPTP complex but rather occurs through increased forma-
tion of calcium-phosphate aggregates. Interestingly calcium phosphate precipitates 
formation in vitro normally is irreversible, and it is not expected that after mito-
chondrial calcium accumulation and precipitates formation they can be easily dis-
solved (Nicholls and Chalmers 2004). This prediction is in contrast with the 
experimental observations that show rapid release of free calcium from the mito-
chondria upon the mPTP activation. It has been suggested that reversibility of the 
calcium-phosphate aggregation is determined by the fact that in addition of the 
orthophosphate; phosphate might present in variety of forms, including ATP and 
inorganic polyphosphates (polyP) (Nicholls and Chalmers 2004; Solesio et  al. 
2016a). Such a notion is supported by the observation that calcium-to-phosphate 
ratio found in calcium-phosphate aggregates is not constant and depends on the 
mitochondrial calcium load. Specifically, when in isolated mitochondria, mPTP 
activation is delayed by the presence of CSA; the calcium/phosphate ratio found in 
precipitates is significantly increased (Kristian et al. 2007).

The mechanistic link between the increased amount of calcium-phosphate pre-
cipitates and mPTP is not entirely clear. One of possibilities is that calcium activa-
tion of mPTP involves its interactions with polyP (Solesio et  al. 2016b). 
Calcium-polyP induction of ion channel formation has been first described in bac-
teria. In this case incubation of mitochondria with calcium leads to the assembly of 
the complex of calcium, polyP, and polyhydroxybutyrate (PHB) (Castuma et  al. 
1995). Such macromolecular complex forms ion channels and was proposed to play 
role in development of competence. In case of mitochondria, the polyP/Ca2+/PHB 
channel has all the characteristics of mPTP (Pavlov et  al. 2005). Mitochondrial 
analog of the bacterial channel forms a large, weakly selective pores. The levels of 
such channel are non-detectable in the intact mitochondria but increase dramati-
cally in the mitochondria in which mPTP was activated by calcium. Complex for-
mation is inhibited in the presence of mPTP blocker CSA.  Interestingly 
mitochondrial channel- forming complex appears to be closely associated with the 
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C-subunit of the mitochondrial ATP synthase (C-subunit) (Elustondo et al. 2016). 
In normal conditions, C-subunit resides in the mitochondrial inner membrane in the 
form of oligomers and does not form high conductance channels. However in path-
ological conditions C-subunit has been directly linked to the mPTP channel forma-
tion (Alavian et al. 2014), it can be suggested that active mPTP requires the presence 
of all three components: polyP, PHB, and C-subunit, which assembly into active 
channel is triggered by interaction between calcium and polyP. This scenario can 
explain the molecular mechanism of mPTP activation by calcium which does not 
involve increase in free calcium concentration. Involvement of the polyP in cal-
cium-induced mPTP is further supported by the observation that in isolated mito-
chondrial high conductance mPTP is inhibited by spermine – polyamine with high 
affinity to polyP (Elustondo et al. 2015). Further experiments will help to clarify the 
details of such model.

4.4  Electrophysiological Properties of mPTP

Experiments with isolated mitochondria that led to discovery of permeability transi-
tion phenomenon could not answer the question on the molecular nature of this 
permeability increase. Generally, mechanisms of membrane permeation might 
occur through the number of pathways. These could involve transporter mechanism, 
nonspecific loss of lipid bilayer integrity, or formation of the large water-filled pore 
in the membrane. The identity of mPTP as a large pore was established by the 
experiments that involved patch clamp of the mitochondrial inner membrane (Szabo 
and Zoratti 1992; Kinnally et al. 1996). It should be noted that due to the nature of 
the technique, patch-clamp experiments cannot be performed in the mitochondria of 
intact cells or functional isolated mitochondria. Indeed, to make inner membrane 
accessible to the patch pipette, mitochondria need to be isolated from the cells, and 
their outer membrane needs to be ruptured either by swelling in low osmotic solu-
tion or by resuspending mitochondria in high osmotic solution and pressing prepa-
ration through French press. Thus, although it is generally agreed that mPTP is a 
large channel, the evidence for this which relies exclusively on patch-clamp data is 
correlative in nature. More direct evidence for this would require establishing the 
molecular identity of mPTP pore and demonstration genetic and pharmacological 
regulation of the mPTP channel.

To date the following electrophysiological properties of the mitochondrial chan-
nel have been assigned to mPTP: it is a large voltage-sensitive, weakly selective 
channel of the maximal conductance size of 1.5 nS and multiple sub-conductance 
states. Some aspects of the regulation of this channel resemble the regulation of 
permeability transition in the isolated mitochondria. Perhaps most importantly, this 
channel is not readily detected in the patch clamp when intact mitochondria were 
swollen in the absence of calcium. However, mPTP was detected in 95% of patches 
of the mitochondrial inner membrane derived from the mitochondria in which 
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mPTP was activated by addition of calcium to the intact organelle prior to the 
 swelling (Kinnally et al. 1991). This is important since as discussed above in the 
intact mitochondria, mPTP cannot be activated by the increase of free calcium con-
centration, and thus it is not expected that calcium activation phenomenon can be 
reproduced in the patch-clamp experiment of the native membrane that hasn’t 
developed mPTP. Indeed, in order to induce mPTP-like channel activity, millimolar 
concentrations of calcium were needed to be added to the solution (Szabo et  al. 
1992). This is three orders of magnitude higher than free calcium concentrations 
experienced by the matrix of intact mitochondria prior to mPTP activation. 
Interestingly, it has been demonstrated in experiments with whole-mitoplast con-
figuration that, even at millimolar concentrations of calcium, mPTP is not activated 
(Kirichok et al. 2004). This is an important finding since, unlike excised patch con-
figuration which might or might not contain mPTP, whole mitoplast includes all the 
membrane and, thus, presumably contained mPTP channels but did not demonstrate 
mPTP even in high calcium. This further stresses the notion that, consistently with 
experiments with intact isolated mitochondria, mPTP is unlikely activated by rise in 
free calcium concentration. Another important parameter of mPTP channel is its 
regulation by CSA. Unfortunately, the use of CSA, which specifically blocks mPTP 
at the level of isolated mitochondria, was not conclusive for mPTP identification in 
case of single- channel electrophysiological studies. This is likely due to the fact that 
CSA does not act directly on the channel part of mPTP but provides inhibitory 
effect through interaction with peripheral protein cyclophilin D (CypD). If CypD is 
lost during the patch-lamp experiment than mPTP, channel loses its sensitivity to 
CSA blocker.

4.5  Molecular Structure of the mPTP

Although complete understanding of the molecular organization of the mPTP is 
still lacking, it is established that mPTP is formed by a large multiprotein complex. 
Several proteins are closely involved in mPTP activity in the inner or outer mito-
chondrial membranes. These include ANT, VDAC, CypD, phosphate carrier, ATP 
synthase, and as well a recently identified novel component of mPTP protein SPG7 
(Shanmughapriya et al. 2015). Knockout experiments confirmed various important 
roles of these proteins in mPTP but also demonstrated that ANT, VDAC, and CypD 
appear to be nonessential for mPTP function. The most important question that is 
currently remains unresolved is what forms the core “pore” part of mPTP. 
Electrophysiological data suggest that pore structure is expected to be similar to 
other known large channels, like mitochondrial outer membrane channel VDAC 
and bacterial porins (Szabo et al. 1993). Over the past two decades, several pro-
teins have been purified from the mitochondria and demonstrated activity compat-
ible with the activity of mPTP as seen in patch-clamp experiments on native 
mitoplasts. This activity has been shown for mitochondrial VDAC and ANT 
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(Brustovetsky et al. 2002). At various time points, these data along with  experiments 
using isolated mitochondria lead to conclusions that pore part of mPTP is com-
posed of these proteins. Furthermore, in the model system when inner mitochon-
drial membrane is reconstituted into giant liposomes by dehydration- rehydration 
procedure, channel of similar size and selectivity can be formed by the translocator 
of the inner membrane (TIM) protein (Muro et al. 2003). In fact, even SPG7 has 
been considered as a core component of mPTP (Shanmughapriya et  al. 2015), 
although this view has been disputed (Bernardi and Forte 2015). Taking into 
account that a large number of mitochondrial proteins can be converted into the 
pore, it is interesting to consider the possibility that depending on conditions mPTP 
might occur through a number of different proteins formed pores. This could 
potentially be the case of knockout experiments when, for example, in ANT knock-
out cells mPTP activation might occur by other pore-forming mechanism.

4.6  ATP Synthase as a Candidate for mPTP Pore

Despite the possibility that various mechanisms of mPTP might be present, cur-
rently most likely mechanism is that this pore is formed with participation of ATP 
synthase (Bonora et al. 2013; Giorgio et al. 2013; Bernardi et al. 2015; Mnatsakanyan 
et al. 2016). More specifically, the pore part is formed by the oligomers of C-subunit 
(Alavian et al. 2014). In normal mitochondria, ATP synthase is a multiprotein com-
plex with oligomers of C-subunit located in the mitochondria inner membrane and 
in the absence of mPTP is not permeable for ions. It has been proposed that during 
mPTP activation, C-subunit is transformed into the mPTP pore. This hypothesis is 
supported by the observation that purified C-subunit forms ion channels in the arti-
ficial lipid membranes. Further, genetic deletion of C-subunit prevents mPTP acti-
vation (Bonora et al. 2013). It is very unlikely though that C-subunit alone forms 
mPTP.  In order to allow ion and small molecule passage, mPTP pore should be 
hydrophilic inside. Such an arrangement for C-subunit is very unfavorable taking 
into account that this is highly hydrophobic protein. Indeed, based on these consid-
erations, it is believed that to form stable structure, C-subunit oligomer should con-
tain lipids in their central core (Walker 2013). The presence of lipids would make 
such structure stable but on the other hand would not allow formation of the high 
conductance pore. Recent studies that show possible association between C-subunit 
and PHB can help to resolve such a controversy. Indeed, PHB is an amphipathic 
molecule which can be present in the highly hydrophobic environment and, at the 
same time, allows ion passage (Seebach and Fritz 1999). PHB can mediate a slow 
diffusion of ions across bilayer as well as form large ion-conducting pores. In mito-
chondria PHB is an endogenous ionophore that in normal conditions contributes to 
the mitochondrial calcium uptake (Smithen et al. 2013). As discussed above, cal-
cium- and polyP-induced association between PHB and C-subunit might contribute 
to the formation of high conductance pore.
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4.7  Possible Physiological Significance of mPTP Activation

While the main focus of the chapter is on review of the details of calcium activation 
of mPTP and induction of pathological membrane conductance, we should note that 
regulation of this channel is a very complicated process that involves many different 
mechanisms and molecules. Thus in this section we briefly summarize possible 
roles of mPTP opening which have been proposed. These include not only patho-
logical consequences of mPTP activation but possible physiological significance of 
this event.

Traditionally, it has been postulated that mPTP opening uncouples the respira-
tory chain, collapses the mitochondrial membrane potential, and arrests the mito-
chondrial ATP synthesis. All these processes together will irretrievably lead to cell 
death (Halestrap 2009). However, recent studies showed that opening the mPTP is 
a double-edged sword for cell survival: on one hand it is an important structure for 
mitochondrial physiology, essential for the proper functioning of the organelle. On 
the other, it is a deleterious process in many pathological processes, such as differ-
ent cardiac diseases (Kwong and Molkentin 2015) and neurodegenerative processes 
(Green and Kroemer 2004), or in nervous and muscular dystrophies (Fiskum 2000; 
Bernardi and Bonaldo 2008).

The actual hypothesis is that while prolonged opening of the mPTP induces 
mitochondrial dysfunction and necrotic cell death, the brief opening of the channel 
is needed for the proper mitochondrial calcium homeostasis and trafficking. In fact, 
the pore is not always closed in resting cells but quickly changing between open and 
closed states of low conductance. When specific inputs reach mitochondria, the 
opening state lasts longer, inducing bioenergetics impairments, mitochondrial dys-
function, and cell death (Petronilli et al. 1999). This dual action of the pore makes 
this structure to be essential both under physiological and pathological conditions.

The fact that mPTP can be modulated by direct molecular effects, as Ca+2, fatty 
acids, Bax, Bid, p53, or indirect pathophysiological effects, as hypoxia, exercise, 
and aging (Marzo et al. 1998; Schonfeld et al. 2000; Zamzami et al. 2000; Marcil 
et al. 2006; Martel et al. 2012; Vaseva et al. 2012), strongly supports the important 
role of mPTP in mitochondrial physiology. In fact, even if classically the pore has 
been postulated to be anchored to the inner mitochondrial membrane, mPTP could 
also be localized in the contact sites between the inner and the outer mitochondrial 
membranes. In this case, mPTP would be involved in energy transfer processes and 
in the apoptotic cell death pathway, by facilitating specific protein-protein interac-
tions, between proteins located in the inner and the outer mitochondrial membranes, 
as well as by inducing protein conformational changes (Brdiczka 1991; Vyssokikh 
and Brdiczka 2003). All these process are needed for the proper mitochondrial 
physiology.

Additionally, mPTP has also been described as a protective mechanism against 
the accumulation of old, defective mitochondria, which drives cells to malfunction-
ing and death in many pathologies, as well as in regular aging (Carew and Huang 
2002; Chen and Chan 2009; Cui et  al. 2012). Mitochondrial dynamics and 
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 mitophagy are the physiological tools to prevent this dysfunction. However, the 
exact mechanisms driving these processes are still unclear. It has been described 
that mPTP may be involved in removing aging mitochondria from cells, by selec-
tive autophagy (Rodriguez-Enriquez et al. 2004). The authors described that aging 
mitochondria are clearly more exposed to oxidative stress, becoming more suscep-
tible to mPTP opening. When this stress will exceed a certain threshold, the 
increased amount of ROS will be enough to induce the opening of the mPTP, even 
at resting Ca+2 concentration. This fact may be understood by the autophagy 
machinery as a signal to activate the process and to delete these aging mitochondria, 
allowing the rest of the organelles and the cell to survive.

Interestingly, under physiological conditions, mPTP is also able to exist in a 
harmless, low conductance state, which may not actually induce mitochondrial 
swelling (Ichas and Mazat 1998) and which is extremely influenced by the mito-
chondrial matrix pH (Ichas et al. 1997). The low conductance pore allows the pass 
of molecules and ions sized 300 kDa, such as H+, K+, and, importantly, Ca+2, between 
the mitochondrial matrix and the other mitochondrial spaces. In fact, Ca+2 could use 
this mechanism to leave mitochondria, in order to keep an adequate cell Ca+2 
homeostasis and trafficking (Hunter and Haworth 1979a, b; Altschuld et al. 1992). 
Thus, this version of the pore promotes mitochondrial depolarization spikes and 
Ca+2 exchange between mitochondria, which in turns generates Ca+2 waves, ampli-
fying Ca+2 signals produced by the endoplasmic reticulum (Ichas et al. 1997; Ichas 
and Mazat 1998). While the opening of the low conductance pore which is present 
under physiological conditions is induced by Ca+2 and blocked by CsA, the unregu-
lated form of the pore, formed under stress and dysfunctional conditions, is inde-
pendent of Ca+2 and insensitive to CsA (He and Lemasters 2002). Importantly, it has 
been demonstrated that the high conductance and the long-lasting mPTP, that is, the 
one present under pathological conditions, is the preferred version of the pore 
(Brenner and Moulin 2012).

Under pathological conditions, mPTP can be involved in both apoptotic and 
necrotic cell death. It has been described that in the presence of ATP, apoptosis is the 
preferred cell death pathway, while in the absence of this energetic molecule, as 
well as when there is mitochondrial Ca+2 overload and excessive ROS generation, it 
is necrosis (Leist et al. 1997; Nicotera and Orrenius 1998; Kim et al. 2003). However, 
both cell death pathways should not be seen as independent processes, as recent 
evidence showed a clear interconnection between them, at different levels, 
(Christofferson and Yuan 2010; Vandenabeele et al. 2010; Galluzzi et al. 2012).

It has also been described that the pore is extremely harmful for cell survival 
when excessive opening and closing cycles that are lasting longer occurred. In these 
cycles, different posttranslational modifications of proteins have been postulated to 
act as metabolic regulators of mPTP. This is the case of sirtuin-3, which is a mito-
chondrial deacetylase, (Giralt and Villarroya 2012). Unbalanced ROS/antioxidant 
ratio could also modify the equilibrium between high and low conductance pore and 
induce long-lasting pore opening, mitochondrial dysfunction, and cell death 
(Zamzami et al. 1998; Curtis et al. 2012).
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The understanding of mPTP functioning, especially under physiological 
 conditions, is still incomplete. Extended studies of this problem should be con-
ducted, in order to elucidate the real role of this phenomenon, which seems to be 
needed both for cell survival and death. Modulation of mPTP represents a feasible 
and promising therapeutic tool against many different diseases and pathologies, 
ranging from ischemia- reperfusion or heart failure to cancer or neurodegeneration.
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Chapter 5
Voltage-Dependent Anion Channels 
and Tubulin: Bioenergetic Controllers 
in Cancer Cells

Eduardo N. Maldonado, David N. DeHart, and John J. Lemasters

5.1  Introduction

5.1.1  Warburg Phenotype and Cell Proliferation

The interdependence between bioenergetics, catabolism, and anabolism differs in 
cancer and other proliferating cells compared to differentiated cells. A metabolic 
phenotype characterized by enhanced glycolysis and suppression of mitochondrial 

E.N. Maldonado 
Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 
DD506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA 

Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA 

Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, 
Charleston, SC 29425, USA
e-mail: maldona@musc.edu 

D.N. DeHart
Departments of Drug Discovery and Biomedical Sciences and the Hollings Cancer Center, 
Medical University of South Carolina, Charleston, SC 29425, USA 

J.J. Lemasters 
Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 
Charleston, SC 29425, USA 

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 
Pushchino, Russian Federation 

Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 
DD506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA 

Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA 

Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, 
Charleston, SC 29425, USA

mailto:maldona@musc.edu


122

metabolism even in the presence of physiological levels of oxygen was first 
described by Otto Warburg in the early twentieth century (Warburg et  al. 1927; 
Warburg 1956). Warburg also postulated that irreversible but not completely dam-
aged respiration led to cancer. According to Warburg, cells compensate for lower 
energy production associated with damaged respiration by increasing the conver-
sion of glucose to lactic acid (fermentation). Cells capable of increasing fermenta-
tion through successive divisions to compensate for defective respiration eventually 
become neoplastic (Warburg 1956). The lack of function of mitochondria in tumor 
tissues was challenged by Weinhouse and others demonstrating both high glycolysis 
and oxidative metabolism in cancer tissues (Weinhouse 1956). Since the early work 
of Warburg, several investigations showed active mitochondrial metabolism in can-
cer cells and their isolated mitochondria as determined by measurements of ATP 
generation, NADH production, and mitochondrial membrane potential (ΔΨ) among 
other functional parameters (Lim et al. 2011; Maldonado et al. 2010; Mathupala 
et al. 2010; Moreno-Sanchez et al. 2014; Nakashima et al. 1984; Pedersen 1978; 
Singleterry et al. 2014).

Although functional, the contribution of mitochondria to ATP generation in can-
cer cells through oxidative phosphorylation (OXPHOS) is lower compared to dif-
ferentiated cells. Differentiated cells produce about 95% of total ATP by OXPHOS 
and the remaining 5% through aerobic glycolysis. By contrast in cancer and other 
proliferating cells, 20–90% of total ATP production derives from glycolysis with the 
remainder coming from mitochondrial oxidation of pyruvate, fatty acids, and gluta-
mine (6, 11). Accordingly, tumor cells have increased uptake of glucose compared 
to differentiated cells. This glucose avidity of tumors can be used to diagnose pri-
mary tumors, recurrences, and metastases by positron emission tomography (PET) 
of the glucose analog 18fluorodeoxyglucose (Zhu et al. 2011). Enhanced glycolysis 
in cancer cells is associated with a high rate of cell proliferation (Griguer et  al. 
2005; Guppy et al. 2002; Moreno-Sanchez et al. 2007; Scott et al. 2011). Nonetheless, 
bioenergetic profiles can be different among tumor types and even in cells from the 
same type of tumor. Subsets of cells with either high glycolysis or high levels of 
OXPHOS have been identified in gliomas and large B cell lymphomas (Beckner 
et al. 2005; Bouzier et al. 1998; Caro et al. 2012).

Incomplete breakdown of glucose through glycolysis generates only 2 moles of 
ATP per mole of glucose, whereas mitochondrial oxidation of the 2 moles of pyru-
vate generated from glucose to CO2 and H2O generates about an additional 31 moles 
of ATP taking into account currently accepted proton stoichiometries for respira-
tion, ATP synthesis, ATP/ADP•Pi exchange, and the malate/aspartate shuttle, 
although actual ATP yields will be less due to proton leak and possible molecular 
“slippage” of the respiratory complexes (Brand 2005; Rich 2003; Rich and Marechal 
2010; Walker 2013; Wikstrom et al. 2015). In cancer cells, lower efficiency of ATP 
generation by aerobic glycolysis appears to be offset by greater glycolytic rates 
(Locasale and Cantley 2010). It is also proposed that the ATP necessary for biosyn-
thesis of macromolecules is lower than the energy requirements of basal cellular 
processes making unlikely that ATP generation is rate limiting in proliferating cells 
(Kilburn et al. 1969).
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The metabolic requirements of cell division are not simply limited to energy 
generation. A dividing cell must double its biomass (lipids, proteins, and nucleic 
acids) before mitosis. This biosynthetic demand requires carbon backbones for the 
synthesis of new macromolecules. Full oxidation of glucose, glutamine, and fatty 
acids in mitochondria generates maximum ATP but not residual carbon backbones. 
By contrast, incomplete breakdown of glucose to lactate and possibly decreased 
mitochondrial degradation of glutamine and fatty acids provides precursors for bio-
mass formation (Cairns 2015; DeBerardinis et al. 2008; Keibler et al. 2016; Liberti 
and Locasale 2016; Lunt and Vander Heiden 2011). Specifically, the by-products of 
glucose catabolism, glucose-6-phosphate, glyceraldehyde-3-phosphate, and 
3- phosphoglycerate contribute to the synthesis of nucleotides, lipids, and amino 
acids, respectively. High glycolytic flux also increases NADPH production by the 
pentose phosphate pathway for reductive biosynthesis. Glutamine and other fuels 
also generate biosynthetic precursors in the Krebs cycle, including citrate for lipid 
biosynthesis and oxaloacetate and α-ketoglutarate for synthesis of nonessential 
amino acids (Fig.  5.1) (DeBerardinis and Cheng 2010). In addition, one-carbon 
metabolism, a set of reactions that transfer one carbon units from serine and glycine, 
plays an important role for de novo synthesis of purines and thymidylate during 
rapid tumor growth (Meiser and Vazquez 2016). In summary, the Warburg meta-
bolic phenotype is a complex network of interrelated processes involving glycolysis 
and mitochondrial metabolism.

5.1.2  Cytosolic ATP/ADP Ratio: A Key to Sustain Glycolysis

Maximal mitochondrial oxidation of respiratory substrates, including pyruvate, 
fatty acyl-CoA, glutamine, and amino acids, by OXPHOS generates a maximum 
yield of ATP per mole of respiratory substrates and minimal residual carbon 
backbones. Newly synthesized ATP in the mitochondrial matrix is transported to 
the cytosol by the electrogenic adenine nucleotide translocator (ANT) because 
of the coupling to ΔΨ of mitochondrial ATP−4 release for ADP−3 uptake. In dif-
ferentiated cells with predominantly oxidative metabolism, cytosolic ATP/ADP 
ratios can be 50–100 times higher than in the mitochondrial matrix (Schwenke 
et al. 1981). A high cytosolic ATP/ADP ratio suppresses glycolysis through inhi-
bition of phosphofructokinase- 1 (PFK-1) although other mechanisms may be 
involved. ATP is a strong allosteric inhibitor, and ADP and AMP are activators 
of PFK-1 (Mor et al. 2011; Moreno-Sanchez et al. 2007). In cancer cells, sup-
pression of mitochondrial metabolism contributes to a low cytosolic ATP/ADP 
ratio, which releases this brake on glycolysis. Recently, we demonstrated that 
closing of the voltage-dependent anion channels (VDAC) promoted by free 
tubulin limits ingress of respiratory substrates into mitochondria and limits ATP 
production, whereas replacement of electrogenic ATP/ADP exchange by ANT 
with a non-electrogenic exchange mechanism decreases cytosolic ATP/ADP 
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ratios. These two independent mechanisms contribute to suppress mitochondrial 
metabolism and to maintain a low cytosolic  ATP/ADP ratio favoring aerobic 
glycolysis in cancer cells (Maldonado et  al. 2013, 2016; Maldonado and 
Lemasters 2014).

5.2  VDAC Modulation of Cancer Bioenergetics

5.2.1  VDAC and the Warburg Phenotype

The bioenergetics of cancer cells depends on chemical reactions occurring in two 
functional, interconnected, and interdependent cellular compartments separated by 
the mitochondrial outer membrane (MOM) (Fig. 5.1). VDAC, the most abundant 
protein in the MOM, is the gateway through which most respiratory substrates, 
ADP, and Pi enter mitochondria and ATP exits. The subcellular localization of 
VDAC determines that the closing or the opening of the channels regulates the flux 
of metabolites that enter or leave mitochondria. Thus, VDAC is positioned to be a 
global controller or governator of mitochondrial metabolism and whole cellular bio-
energetics (Lemasters and Holmuhamedov 2006; Maldonado et al. 2013; Maldonado 
and Lemasters 2012, 2014).

The influx of polar metabolites through VDAC is determined mostly by their 
charge and size (Colombini 1980, 2004). Metabolites that reach the intermembrane 
space are further transported to the matrix by numerous different transporters 
located in the mitochondrial inner membrane (MIM). Respiratory substrates in the 
matrix are catabolized in the Krebs cycle generating NADH and FADH2 that enters 
the respiratory chain. The transfer of electrons from NADH and FADH2 to the final 
acceptor O2 produces proton translocation across MIM by Complexes I, III, and IV 
to generate a negative transmembrane ΔΨ and positive ΔpH, the components of the 
proton motive force (Δp). Δp then drives ATP synthesis from ADP and Pi by 
Complex V (F1FO-ATP synthase) (Fig. 5.1).

Based on its role in metabolite exchange between mitochondria and the cytosol, 
VDAC is proposed to be a regulated governor or “governator” that limits global 
mitochondrial metabolism (Lemasters and Holmuhamedov 2006). Interactions 
with tubulin and possibly other proteins, such as hexokinase (Pastorino and Hoek 
2003; Wolf et al. 2011), modulate the open/closed sate of VDAC. Single and dou-
ble knockdown of the three different VDAC isoforms support this concept that 
VDAC serves as a master regulator of mitochondrial metabolism in cancer cells 
(Maldonado et  al. 2013). Thus, VDAC regulation by free tubulin emerges as a 
mechanism to block or promote OXPHOS and indirectly regulate glycolysis 
through the cytosolic ATP/ADP ratio. Ultimately, disruption of VDAC-tubulin 
interactions may be a pharmacological target to increase mitochondrial metabolism 
in cancer cells and to revert Warburg metabolism.
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5.2.2  VDAC Structure and Regulation of Mitochondrial 
Metabolism

The three isoforms of VDAC present in all eukaryotic cells, VDAC1, VDAC2, and 
VDAC3, are encoded by separate genes. VDAC1 and VDAC2 are the main isoforms 
in most differentiated mammalian cells. The minor isoform VDAC3 is abundant 
only in testis (Sampson et al. 1997, 2001). In cancer cells VDAC1 and VDAC2 are 
also the major isoforms accounting for 90% of the total. The least abundant isoform, 
VDAC3, comprises the remaining 10% (De Pinto et al. 2010; Huang et al. 2014; 
Maldonado et al. 2013). Gating and selectivity of VDAC1 and VDAC2 are highly 
conserved among mammals (Blachly-Dyson and Forte 2001).
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Fig. 5.1 VDAC in Warburg metabolism. Metabolites cross mitochondrial outer membranes 
through VDAC. Oxidation of respiratory substrates in the tricarboxylic acid cycle generates NADH 
and FADH2, which feed into the respiratory chain (Complexes I–IV). Proton translocation by the 
respiratory chain across MIM generates ΔΨ. ATP is synthesized from ADP and Pi by the F1FO-ATP 
synthase (Complex V) driven by protons moving back across MIM into the matrix. Glucose-6- 
phosphate (G-6-P), glyceraldehyde 3-phosphate (Glyc-3-P), and 3-phosphoglycerate (3-PG) origi-
nating from the catabolism of glucose and intermediates of the Krebs cycle are used for synthesis 
of nucleotides, lipids, and amino acids. In cancer cells, high free tubulin blocks VDAC conduc-
tance, suppresses mitochondrial metabolism, and decreases cytosolic ATP/ADP to favor glycoly-
sis. α-KG α-ketoglutarate; MIM Mitochondrial inner membrane
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VDAC in humans and mice is a ~30 kDa protein enclosing an aqueous channel 
of ~3-nm internal diameter that allows the passage of molecules up to ~5  kDa 
(Colombini 1980, 2012; Song and Colombini 1996). In the closed state, the flux 
through VDAC of respiratory substrates, ATP, ADP, Pi, and other mostly anionic 
metabolites is blocked. Structural studies reveal that VDAC1 has a barrel configura-
tion with staves formed by 19 β-strands (Hiller et al. 2010; Ujwal et al. 2008). An 
additional N-terminal sequence forms the only α-helical segment. The N-terminal 
helix appears to move to the center of the channel, blocking the passage of metabo-
lites. Recently, a similar β barrel structure with 19 β-strands has been shown for 
VDAC2 from zebra fish (Schredelseker et al. 2014).

Because of its localization in the MOM and central role in mediating 
mitochondria- cytosol fluxes of metabolites, VDAC was initially considered consti-
tutively open, but numerous studies show regulation by multiple factors, including 
hexokinase (Al Jamal 2005; Azoulay-Zohar et al. 2004; Nakashima et al. 1988), 
Bcl2 family members (Tsujimoto and Shimizu 2000), glutamate (Gincel et  al. 
2000), ethanol (Holmuhamedov and Lemasters 2009; Lemasters and Holmuhamedov 
2006), and NADH (Zizi et al. 1994). VDAC phosphorylation by protein kinases, 
including glycogen synthase 3β (GSK3β), protein kinase A (PKA), and protein 
kinase C epsilon (PKCε), blocks or inhibits association of VDAC with other pro-
teins, such as Bax and tBid, and also regulates VDAC opening (Azoulay-Zohar 
et al. 2004; Baines et al. 2003; Das et al. 2008; Lee et al. 1994; Rostovtseva et al. 
2004; Vander Heiden et al. 2000, 2001). PKA-dependent VDAC phosphorylation 
decreases VDAC conductance (Bera et al. 1995), whereas GSK3β-mediated VDAC2 
phosphorylation induces VDAC opening (Das et al. 2008). Here, we will focus on 
the inhibitory effect of free tubulin on VDAC in cancer cells as a regulatory mecha-
nism of VDAC opening (Maldonado et al. 2010, 2013; Palmieri and Pierri 2010).

5.3  VDAC-Tubulin Interaction

5.3.1  VDAC Inhibition by Free Tubulin

Mitochondrial ΔΨ in cancer cells can be generated both by the respiratory chain 
and from hydrolysis of glycolytic ATP by the mitochondrial F1FO-ATPase working 
in reverse. Pharmacological interventions to destabilize microtubules with 
nocodazole and colchicine or stabilize microtubules with paclitaxel increase and 
decrease, respectively, cytosolic free tubulin. Such high and low cytosolic free tubu-
lin promotes low and high mitochondrial ΔΨ, respectively (Maldonado et al. 2010). 
In nonproliferating cells like cultured rat hepatocytes, free tubulin is much lower 
compared to hepatoma cells, since nonproliferating hepatocytes do not need a res-
ervoir of tubulin for spindle formation at mitosis. Thus, microtubule stabilization 
with paclitaxel does not increase ΔΨ in hepatocytes, because free tubulin is already 
very low, whereas microtubule destabilization still increases tubulin and, in turn, 
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decreases ΔΨ. These findings imply that VDAC is indeed constitutively open in 
nonproliferating hepatocytes under normal incubation. By contrast, since paclitaxel 
increases and nocodazole/colchicine decreases ΔΨ in tumor cells, the conclusion 
can be made that VDAC is partially closed in tumor cells under the regulation of 
endogenous free tubulin (Maldonado et al. 2010). Negative modulation of ΔΨ by 
tubulin through VDAC closure is a mechanism that explains, at least in part, the 
suppression of mitochondrial metabolism in the Warburg phenotype. Our studies 
performed in intact cancer cells are in agreement with earlier work showing that 
heterodimeric αβ-tubulin closes VDAC inserted into lipid bilayers and decreases 
respiration in isolated brain mitochondria and permeabilized synaptosomes 
(Rostovtseva et al. 2008; Timohhina et al. 2009).

Knockdown studies of VDAC1, VDAC2, and VDAC3  in HepG2 cells further 
characterized the role of VDAC in mitochondrial metabolism in cancer cells. Single 
knockdown of each of the three VDAC isoforms, especially the minor isoform 
VDAC3, decreased mitochondrial ΔΨ, indicating that all VDAC isoforms contrib-
ute to ΔΨ formation. Knockdown of VDAC3 not only caused the greatest drop in 
ΔΨ but also decreased cellular ATP and ADP and the NAD(P)H/NAD(P)+ ratio, 
suggesting that the VDAC3 contributed most to MOM permeability despite being 
the least abundant isoform (Maldonado et al. 2013). Double knockdown of VDAC 
isoforms in all possible combinations allowed determination of the response of each 
individual isoform to tubulin inhibition. All single and double knockdowns partially 
blocked suppression of ΔΨ induced by increased free tubulin (Maldonado et  al. 
2013). Further studies showed an almost identical voltage gating and response to 
dimeric αβ-tubulin of constitutive VDAC isolated from wild-type HepG2 cells com-
pared to VDAC from heart and liver mitochondria. VDAC1 and VDAC2 isolated 
from double knockdown HepG2 cells inserted in lipid bilayers were almost equally 
sensitive to tubulin inhibition, whereas VDAC3 was insensitive even at tubulin con-
centrations fivefold higher than those used to inhibit VDAC1 and VDAC2 
(Maldonado et  al. 2013). The knockdown studies supported the conclusion that 
VDAC3, at least in HepG2 cells, is constitutively open, whereas VDAC1 and 
VDAC2 are totally or partially closed by free tubulin.

5.3.2  VDAC-Tubulin Influence on Warburg Metabolism 
During Cell Cycle

During the cell cycle, biosynthetic processes to generate a new cell occur during G1, 
S, and G2. Presumably, Warburg metabolism is maximal during these phases, and 
mitochondrial metabolism is suppressed. VDAC closing by a pool of constitutive 
free tubulin appears to contribute to mitochondrial suppression during these growth 
stages. Most of the cell cycle of cancer cells is composed by G1, S, and G2 phases. 
The actual cell division occurs during the M or mitotic phase lasting only about 
30 min of a cell cycle lasting 30 h or more (Hahn et  al. 2009). During mitosis, 
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energy demand increases sharply to support chromosome separation and cytokine-
sis. At this point, a Warburg metabolic phenotype may not be beneficial since all the 
new macromolecules have been already synthesized. Moreover, mitochondrial acti-
vation and full oxidation of respiratory substrates may be required to meet the ATP 
demands of cell division. A possible scenario is that as the spindle forms during 
prophase, the free tubulin pool decreases abruptly, releasing tubulin inhibition of 
VDAC. VDAC opening then promotes increased mitochondrial metabolism revert-
ing the Warburg phenotype precisely when the energy demand is maximal. After 
mitosis, the pool of free tubulin increases again, and cells return to a high glycolytic, 
pro-proliferative phenotype during the non-mitotic stages of the cell cycle 
(Maldonado and Lemasters 2012).

5.3.3  Mitochondrial Contribution to Metabolic Heterogeneity 
in Tumors

The extent to which cancer cell metabolism is glycolytic or oxidative is not a per-
manent feature and is under epigenetic control. Tumor cells are metabolically flex-
ible, and the relative contribution of OXPHOS can vary substantially over time 
depending on multiple factors, including availability to different fuels, proximity to 
newly formed vs. mature blood vessels, and the release of soluble factors such as 
lactate from neighboring cells, both cancerous and noncancerous. Hypoxia can 
decrease the OXPHOS flux depending on time of hypoxic exposure, cell type, and 
environmental conditions. In MCF-7 and HeLa cells that predominantly depend on 
OXPHOS for ATP supply, prolonged hypoxia increases glycolysis only in MCF-7 
(Rodriguez-Enriquez et al. 2010). The respiratory chain of tumor cells can be fully 
functional at oxygen levels as low as 0.5%, which is biologically relevant because 
in solid tumors with heterogeneous perfusion, tumor cells exposed to 2% or less of 
oxygen can still produce ATP by OXPHOS.

Inadequate blood perfusion in rapidly growing tumors not only exposes cells to 
hypoxia but to a less frequently considered lower supply of nutrients such as glu-
cose. The importance of nutrient availability on the bioenergetic profile of cancer 
cells is illustrated by the switch from aerobic glycolysis to OXPHOS in breast can-
cer cell lines and lymphoma cells cultured in glucose-free media (Robinson et al. 
2012; Smolkova et  al. 2010). Tumor cells also adapt to oxidize other substrates 
when glucose or glutamine are limited, including lactate, methionine, asparagine, 
leucine, arginine, cysteine, acetate, and even proteins and lipids from the environ-
ment (Chung et  al. 2005; Clavell et  al. 1986; Comerford et  al. 2014; Commisso 
et al. 2013; Keenan and Chi 2015; Kennedy et al. 2013; Kreis et al. 1980; Mashimo 
et al. 2014; Scott et al. 2000; Sheen et al. 2011; Sonveaux et al. 2008). While glu-
cose deprivation promotes a switch to oxidative metabolism, inhibition of Complex 
III by antimycin and Complex I by piericidin A triggers a compensatory increase in 
the uptake and consumption of glucose in myoblasts. Total cellular ATP production 
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before and after OXPHOS inhibition was similar indicating that the loss of ATP 
generation by OXPHOS was fully compensated by increased glycolytic ATP gen-
eration (Liemburg-Apers et al. 2015). This metabolic flexibility of tumors and the 
potential to switch from a predominantly glycolytic to an oxidative metabolism and 
vice versa underscore the importance of mechanisms like VDAC regulation that 
underlie these adaptive changes.

Most research efforts to target tumor metabolism have been directed toward inhi-
bition of glycolysis (Doherty and Cleveland 2013; Pelicano et  al. 2006). Only 
recently has mitochondrial metabolism emerged as a chemotherapeutic target (Bhat 
et al. 2015; Weinberg and Chandel 2015). Most approaches attempt to inhibit mito-
chondrial metabolism in cancer cells. The observation that the antidiabetic drug 
metformin decreased the prevalence of certain types of cancer triggered an interest 
in the role of mitochondrial inhibition as a mechanism to suppress abnormal cell 
proliferation (Giovannucci et  al. 2010; Libby et  al. 2009). Although metformin 
decreases OXPHOS by inhibiting Complex I of the respiratory chain, metformin 
also inhibits the mammalian target of rapamycin (mTOR), interferes with folate 
metabolism, and activates AMP kinase (AMPK) (Jara and Lopez-Munoz 2015). 
Other approaches to inhibit mitochondrial metabolism in various cancer cell models 
include etomoxir to inhibit carnitine O-palmitoyltransferase 1 and consequent mito-
chondrial fatty acid oxidation (leukemia), tigecycline to inhibit mitochondrial pro-
tein translation (leukemia), glutaminase inhibitors (breast cancer, lymphoma), and 
the compound VLX600 to inhibit OXPHOS (colon cancer) (Samudio et al. 2010; 
Skrtic et al. 2011; Wang et al. 2010; Zhang et al. 2014). By contrast, other antican-
cer, antiproliferative strategies attempt to promote mitochondrial metabolism. For 
example, the pyruvate analog dichloroacetate activates pyruvate dehydrogenase to 
increase mitochondrial metabolism, which promotes cell killing in several cancer 
cell lines and in some in vivo models (Sutendra and Michelakis 2013).

5.3.4  VDAC Opening: A Metabolic Switch

The relative closure of VDAC by free tubulin in cancer cells and the broad meta-
bolic consequences of VDAC opening make VDAC-tubulin interaction a novel 
pharmacological target to revert the Warburg phenotype. Antagonizing the constitu-
tive inhibition of VDAC by free tubulin would be expected to increase mitochon-
drial metabolism and to have an anti-Warburg effect. Our group reported the first 
antagonist of the inhibitory effect of free tubulin on VDAC, the small molecule 
erastin (Maldonado et al. 2013). Erastin selectively induces non-apoptotic cell death 
in human cells engineered to harbor small T oncoprotein and the oncogenic allele of 
HRAS, v-Ha-ras Harvey rat sarcoma viral oncogene homologue RASv12 (Dolma 
et al. 2003). Erastin non-apoptotic-induced cell death is blocked by antioxidants, 
such as α-tocopherol, butylated hydroxytoluene, and desferal, but not by pan- 
caspase inhibitors (Dolma et  al. 2003). Other cell lines harboring the v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homologue (KRAS) and an activating V600E 
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mutation in v-raf-murine sarcoma viral oncogene homologue B1 (BRAF) are mod-
erately sensitive to erastin. Erastin is proposed to bind to VDAC2 and VDAC3, 
leading to oxidative stress and cell death in cells with activated RAS-RAF-MEK 
signaling (Yagoda et al. 2007).

Erastin in wild-type HepG2 cells and other cell lines promotes mitochondrial 
hyperpolarization and prevents depolarization induced by microtubule destabiliz-
ers. In addition, erastin added after microtubule destabilizers restores mitochondrial 
ΔΨ, indicating that erastin prevents and reverts the inhibitory effect of free tubulin 
on VDAC (Maldonado et al. 2013). Erastin also completely blocks the inhibitory 
effect of free tubulin on VDAC conductance of wild-type VDAC from HepG2 cells 
inserted into planar lipid bilayers. Erastin alone did not modify the voltage depen-
dence of VDAC closure, indicating that the effect of erastin was specific for tubulin- 
dependent inhibition of VDAC (Maldonado et al. 2013). Following the identification 
of erastin as a VDAC-tubulin antagonist, we identified a group of “erastin-like” 
compounds using a high-throughput cell-based screening. These erastin-like com-
pounds were selected based on their capability of hyperpolarizing mitochondria in 
the presence of microtubule destabilizers (DeHart et al. 2015).

5.3.5  VDAC Opening-Related Effects in Cancer Cells

VDAC opening leads to three main biological effects: increased mitochondrial 
metabolism, decreased glycolysis, and increased formation of reactive oxygen spe-
cies (ROS). After VDAC opening, flux of pyruvate, fatty acids, and other metabolic 
substrates into mitochondria fuels the tricarboxylic acid cycle to produce NADH 
that enters the electron transport chain. Increased mitochondrial ΔΨ and increased 
reduction of respiratory chain components lead to superoxide anion (O2•−) genera-
tion (Chance et  al. 1979; Suski et  al. 2012). Quantitatively mitochondria are the 
most important source of ROS, with Complex III (Site IIIQo), Complex I (Site IQ), 
and Complex II (Site IIF) being the main ROS-producing sites out of seven major 
mitochondrial sites (Chen et  al. 2003; Quinlan et  al. 2012; Tribble et  al. 1988), 
(Skulachev 1996). O2•− formed at Complexes I and II is released to the matrix, 
whereas O2•− generated at Complex III is released in large part to the intermembrane 
space and hence to the cytosol through VDAC (Brand 2010; Han et al. 2003; Muller 
et al. 2004). O2•− is rapidly converted to H2O2 by superoxide dismutases located in 
the mitochondrial matrix (manganese-containing enzyme MnSOD or SOD2) and 
the cytosol (copper-and-zinc-containing enzyme Cu, ZnSOD, or SOD1) (Fridovich 
1997). H2O2, the least reactive of ROS, diffuses across membranes and is a cell 
signaling molecule that does not necessarily disrupt redox homeostasis (Morgan 
et al. 2011; Veal et al. 2007). For example, H2O2 modulates the pro-survival HIF-1 
and MAP/ERK, PI3K/akt/mTOR pathways that favor tumorigenesis and metastasis 
(Clerkin et al. 2008; Giles 2006; Ushio-Fukai and Nakamura 2008). Alternatively, 
H2O2 can accept an electron from free and loosely bound Fe2+ to form the highly 
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reactive hydroxyl radical (OH•) by the Fenton reaction. O2•− and especially the 
highly reactive OH• are damaging for cells.

VDAC opening promotes mitochondrial ROS formation by increasing mito-
chondrial ΔΨ and the reduction of the respiratory chain. Continued ROS production 
eventually overcomes the antioxidant capacity of cancer cells leading to cytotoxic-
ity. Opening of VDAC by antagonism of the inhibitory effect of free tubulin on 
VDAC selectively affects cancer and other proliferating cells, since free tubulin is 
low and does not inhibit VDAC in differentiated cells (Maldonado et  al. 2010; 
Maldonado and Lemasters 2012). In cancer cells, ROS can be cytostatic, favor 
tumor growth, or be cytotoxic (Marengo et  al. 2016; Panieri and Santoro 2016; 
Sullivan and Chandel 2014). Although basal levels of ROS are higher in cancer cells 
compared to differentiated cells, these higher ROS levels are compensated by the 
higher content of scavenging enzymes and antioxidants, including glutathione- 
linked enzymes that reduce protein disulfide bonds, catalase that converts H2O2 to 
H2O and O2, and SODs (Liou and Storz 2010; Panieri and Santoro 2016; Sullivan 
and Chandel 2014; Venditti et al. 2013). Oxidative stress is reported to induce can-
cer cell cycle arrest, senescence, apoptosis, or necrosis (Liou and Storz 2010). 
Chemotherapeutic agents including cisplatin, adriamycin, the anthracyclines doxo-
rubicin, epirubicin, and daunorubicin among others promote oxidative stress and 
depletion of the antioxidant capacity of tumor cells leading to a tumoricidal effect 
(Conklin 2004; Faber et al. 1995; Ladner et al. 1989; Weijl et al. 1998).

The effects of mitochondrially generated ROS on cellular structures depend on 
the specific ROS. The lifetimes of H2O2 and O2•− allow them to react both with 
mitochondria and extramitochondrial structures. By contrast, OH• is so reactive that 
its effects are almost completely restricted to mitochondria. Both O2•− and OH• 
inactivate mitochondrial proteins, including ATP synthase, NADH oxidase, and 
NADH dehydrogenase (Zhang et al. 1990). Beyond proteins, ROS damage mito-
chondrial DNA and lipids in the MIM. Cardiolipin, a MIM phospholipid rich in 
polyunsaturated fatty, is peroxidized by ROS, and peroxidized cardiolipin is consid-
ered an early event in apoptosis (Schenkel and Bakovic 2014). Cytosolic ROS, in 
turn, activate members of the MAPK family of serine/threonine kinases, especially 
c-Jun N-terminal kinase (JNK), the extracellular signal-regulated kinase (ERK 1/
ERK 2), and p38 whose signaling can cause mitochondrial dysfunction (Kamata 
et al. 2005; Son et al. 2011).

5.3.6  A Metabolic Double Hit: Anti-Warburg Effect 
and Oxidative Stress

Heterogeneity of metabolism among cells within a tumor is a complicating factor 
for the success of cancer chemotherapy (Dang 2012; Eason and Sadanandam 2016; 
Gerlinger et  al. 2012; Yun et  al. 2012). However, nearly all cancer cells display 
some level of enhanced glycolysis, suggesting some degree of contribution of 
VDAC closure to suppression of mitochondrial metabolism (Griguer et al. 2005; 
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Guppy et al. 2002; Moreno-Sanchez et al. 2007; Scott et al. 2011). Antagonism of 
the inhibitory effect of tubulin on VDAC triggers two distinct and nearly simultane-
ous effects: (1) activation of OXPHOS with consequent decrease of glycolysis (anti- 
Warburg effect) and (2) an increase in ROS formation leading to oxidative stress. 
The antiproliferative effect of derepression of mitochondrial function (anti-Warburg 
effect) may be quantitatively more important in highly glycolytic tumors, whereas 
oxidative stress may cause tumoristatic and tumoricidal effects on a more broad 
population of cells.

The VDAC-tubulin antagonist erastin and erastin-like compounds cause mito-
chondrial hyperpolarization followed by mitochondrial depolarization indicative of 
mitochondrial dysfunction in human hepatocarcinoma cells (Fig. 5.2). The initial 
increase in ΔΨ is just in advance of the increase in ROS generation, whereas subse-
quent JNK activation precedes mitochondrial dysfunction. A lead erastin-like com-
pound identified by small molecule screening also decreases glycolysis as evidenced 
by a decrease in lactate release (DeHart 2015). The combination of reversal of 
Warburg metabolism and oxidative stress by the lead compound causes cell death to 
human hepatocarcinoma cell lines in culture and to xenografted Huh7 hepatocarci-
noma cells (DeHart et al. 2015). Thus, erastin and lead erastin-like compound by 
causing “two hits” of anti- Warburg metabolism and promotion of oxidative stress 
represent a potential new class of cancer chemotherapeutic agents (Fig. 5.3).

2 h

Erastin

Baseline 4 h

X1

Baseline 1 h 2 h

0

255

20 µm

Fig. 5.2 Erastin and X1-dependent mitochondrial dysfunction. Initial mitochondrial hyperpo-
larization induced by erastin (center upper panel) and X1 (center lower panel) was followed 
by mitochondrial depolarization indicative of mitochondrial dysfunction (right upper and 
lower panels)
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5.4  Concluding Remarks

VDAC-tubulin interaction in cancer cells is a global bioenergetic controller. Drug- 
induced VDAC opening increases mitochondrial metabolism and decreases glycol-
ysis. Opening of the VDAC switch triggers two “hits” – an anti-Warburg effect that 
promotes a nonproliferative metabolic phenotype and an increase in ROS formation 
leading to mitochondrial dysfunction and cell death. ROS may be lethal for some 
cells and sublethal for others, whereas the anti-Warburg effect will decrease or stop 
cell proliferation. In summary, VDAC-tubulin is a new pharmacological target to 
turn a pro-proliferative into a nonproliferative phenotype and to induce oxidative 
death to cancer cells.
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Fig. 5.3 Mechanisms to promote cell death after VDAC opening. X1 decreased lactate release by 
80% in Huh7 cells (anti-Warburg effect, Hit 1). Lead compound X1 also increased fluorescence of 
the cellular ROS indicator CellROX green and the mitochondrial superoxide anion indicator 
MitoSOX red in Huh7 cells (oxidative stress, Hit 2). The two-hit mechanism led to over 90% cell 
death in Huh7 cells and over 80% in HepG2 cells
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Chapter 6
An Assessment of How VDAC Structures  
Have Impacted Our Understanding  
of Their Function

Lucie Bergdoll, Michael Grabe, and Jeff Abramson

6.1  Introduction

Mitochondria are the control centers for respiration in all eukaryotic cells producing 
the vast majority of the universal cellular energy currency, ATP. Efficient exchange 
of anions, cations, and metabolites between the cytoplasm and the intermembrane 
space (IMS) of the mitochondria is essential for cellular homeostasis, and this 
exchange is mediated by the most abundant protein in the outer mitochondrial mem-
brane  – the voltage-dependent anion channel (VDAC) (Schein et  al. 1976; 
Rostovtseva and Colombini 1997). Given its role as the primary conduit between 
the cytoplasm and the mitochondria, VDAC represents an essential cog in the mito-
chondrial machine’s capabilities of modulating mitochondrial activity.

In mammals, there are three VDAC isoforms – VDAC1, VDAC2, and VDAC3 – 
which have a high degree of sequence similarity (~80%) and wide and overlapping 
tissue distribution (Fig. 6.1). All isoforms have the ability to transport metabolites 
and ions (Craigen and Graham 2008); however, they have distinct physiological roles. 
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VDAC1 is the prototypical isoform common to all Eukaryotes and by far the most 
well characterized (Yamamoto et al. 2006). It is responsible for most of the metabo-
lite transport across the OMM. The human VDAC2 isoform has a unique N-terminal 
extension of 11 residues and contains 7 additional cysteines compared to hVDAC1 
(shown in red in Fig. 6.1). The functional significances of these alterations remain 
unknown as they have very similar ion and metabolite transport  activity. From a 

Fig. 6.1 Comparison of VDAC isoforms. Sequence alignment of several VDAC isoforms: 
mVDAC1 (Q60932), hVDAC1 (P217796), zfVDAC2 (Q8AWD0), hVDAC2 (P45880), and 
hVDAC3 (Q9Y277). The secondary structure elements are represented on top of the sequence for 
reference. The cysteine residues are shown in red boxes, and the N-terminal extension of 11 amino 
acids of hVDAC2 is shown in green
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physiological standpoint, VDAC2 has a number of unique properties including 
favorable calcium transport (Shimizu et al. 2015) and forming complexes with pro-
teins of the Bcl2 family (Roy et al. 2009). VDAC3 is the least abundant isoform, and 
very little is known about its function. It is noteworthy that while VDAC1 is the 
most widely expressed isoform, knockout mice lacking VDAC1 display only a mild 
phenotype. On the contrary, VDAC2 knockout mice are embryonically lethal 
(Cheng et al. 2003) and knockout mice of VDAC3 lead to male sterility (Sampson 
et al. 2001).

In 2008, after three decades of biophysical and biochemical characterization, the 
structure of VDAC1 was resolved by three independent groups using NMR and 
X-ray crystallography (Bayrhuber et al. 2008; Hiller et al. 2008; Ujwal et al. 2008). 
Protein structure is a valuable tool for interpreting functional data and driving new 
experiments to test the proteins’ functional properties. Since publishing the structure 
of murine VDAC1 (Ujwal et al. 2008), its atomic blueprint has been prodded by a 
large number of cellular, biochemical, and biophysical studies (in excess of 300). In 
this chapter, we will provide an overview of our current structural knowledge of 
VDACs and discuss the progress in the field since the structural models have been 
released. We will also highlight the remaining structural challenges and questions 
that have yet to be answered.

6.2  The Structure

In 2008, the first structures of VDAC1 were solved by three independent groups: 
two structures of hVDAC1 – one by NMR (Hiller et al. 2008) and the other using a 
combination of NMR and X-ray crystallography (Bayrhuber et al. 2008) – and a 
high-resolution crystal structure of murine VDAC1 at 2.3 Å (mVDAC1) (Ujwal 
et al. 2008). Murine and human VDAC1 have nearly identical sequences differing 
by only two conservative amino acid substitutions. The overall structure forms a 
β-barrel composed of 19 β-strands forming a large pore of 27 Å, with an overall 
height of 40 Å (Fig. 6.2). As anticipated, the strands are arranged in an antiparallel 
fashion with the exception of strands 1 and 19, which associate in a parallel manner. 
The mVDAC1 structure established the position of an N-terminal distorted α-helical 
segment located approximately halfway down the pore held by strong hydrophobic 
interactions with β-strand 8 through 18 of the barrel wall. The secondary structure 
coincides nicely with early circular dichroism studies that predicted a protein com-
posed of both α-helix and β-sheet segments (Shanmugavadivu et al. 2007). These 
VDAC1 structures, with an odd number of strands, represented a new membrane 
protein fold since all other known β-barrel membrane proteins are composed of 
even number of strands (Zeth 2010). In addition, VDAC is one of the two mamma-
lian β-barrel membrane protein structures solved to date with the lymphocyte perfo-
rin protein from Mus musculus (Law et al. 2010) being the other. By far, the vast 
majority of β-barrel membrane protein structures are from prokaryotic origin  (http://
blanco.biomol.uci.edu/mpstruc/).

6 An Assessment of How VDAC Structures Have Impacted Our Understanding…
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In 2014, a structure of the second isoform from zebrafish (zfVDAC2) was solved 
at 2.8 Å resolution by X-ray crystallography (Schredelseker et al. 2014). A structural 
alignment between zfVDAC2 (PDB accession code 4BUM) and mVDAC1 (PDB 
accession code 3EMN) reveals a small Cα root mean square deviation of 1 Å 
(between all residues), underscoring their high degree of structural similarity and 
explaining their similar functional properties (Fig. 6.3). However, it is noteworthy 
that some of the most striking sequence differences between VDAC1 and VDAC2 
discussed previously – namely, the 11 amino acid N-terminal extension and 7 addi-
tional cysteines present in mammalian VDAC2 – are not present in zfVDAC2. In this 
regard, zfVDAC2 has a sequence more similar to VDAC1 than many other VDAC2 
subtypes. Nevertheless, a rescue study using zfVDAC2 to rescue the phenotype of 
VDAC2−/− mouse embryonic fibroblast unambiguously demonstrated that zfVDAC2 
had the same functional properties as mammalian VDAC2 (Naghdi et  al. 2015). 
Currently, there are no representative structures from isoform 3 or mammalian iso-
form 2. The structural difficulties with these later two subtypes are mainly due to 
difficulties in refolding and obtaining sufficient quantities for structural studies.

The structures of both VDAC1 (mVDAC1 and hVDAC1) and zfVDAC2 isoforms 
have a glutamate at position 73 (E73), which is facing toward the lipidic milieu 
(Fig.  6.4). Charged side chains are not frequently observed in such hydrophobic 

Fig. 6.2 Structural overview of mVDAC1. (a) Topology of the primary sequence. (b) Cartoon 
representation of mVDAC1 based on PDB file 3EMN. The left panel is the view from the mem-
brane with β-Strands 3–7 removed for clarity, and the right panel is the top down view from the 
inter-membrane space (Adapted from Ujwal et al. (2008))
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Fig. 6.3 Superimposition of the crystal structures of mVDAC1 (PDB code 3EMN, colored in 
gray) and zfVDAC2 (PDB code 4BUM, colored in blue) present a Cα root mean square deviation 
of 0.98 Å. Left panel: view from the membrane; right panel: view from the cytosol

Fig. 6.4 Glutamate 73 is a charged side chain residue pointing toward the membrane. Bottom: 
Sequence alignment of the three mouse VDAC isoforms centered on glutamate 73. VDAC1 and 
VDAC2 possess a glutamate (E) in position 73, whereas VDAC3 possesses a glutamine (Q)

6 An Assessment of How VDAC Structures Have Impacted Our Understanding…
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environments, but when present they often have a specific functional role. In the case 
of the transporter LeuT, the basic residue K288 faces the membrane environment, 
potentially affecting the rate of transition from the outward-facing state to the 
inward-facing state of the protein (Mondal et  al. 2013). Charged residues in the 
membrane can also serve key functional roles, such as the residue D61 on the rotor 
of the F1-FO ATPase, which binds and releases protons (Valiyaveetil et al. 2002) as 
they move across the inner mitochondrial membrane imparting rotary torque on the 
gamma shaft to drive ATP production (Elston et al. 1998)1. What role does E73 play 
in regulating VDAC? Interestingly, cells treated with dicyclohexylcarbodiimide 
(DCCD), a compound that has been shown to exclusively bind at position E73 in 
VDAC1, prevent the formation of hexokinase-VDAC1 complex (De Pinto et  al. 
1993). E73 is also implicated in calcium binding (Ge et al. 2016; Israelson et al. 
2007) and calcium-mediated oligomerization (Keinan et al. 2013). The precise func-
tional roles of E73 are not fully understood; however, the third isoform – VDAC3 – 
has a glutamine at this position (Fig. 6.4) likely leading to isoform- specific function 
of VDAC3.

Like most high-resolution structures, the structures of VDACs answered many 
questions regarding their function, but many more questions arose. The most strik-
ing one revolved around the physiological relevance of the 2008 structures. It was 
originally hypothesized, based on the primary sequence, that VDAC would adopt a 
19 β-strand fold (Forte et al. 1987); then a second model based on biochemical data 
suggested a 13 β-strand fold (Colombini 2009). Structure function studies on VDAC 
were made possible through the development of protocols allowing for the large- 
scale production of VDAC from inclusion bodies using E. coli as an expression 
host. After in vitro refolding, high yields of pure and homogenous protein, neces-
sary for structure-function studies, could be obtained (Koppel et al. 1998). The 13 
β-strand biochemical model, claimed to be the native structure of VDAC in opposi-
tion to the solved structure using proteins refolded from inclusion bodies, was 
strongly refuted by all three structural groups (Hiller et al. 2010). Refolding protein 
is a commonly used method that does not alter folds as it was proven by many addi-
tional studies on membrane proteins prepared from inclusion bodies (such as 
TOM40 (Kuszak et al. 2015), UCP (Jaburek and Garlid 2003), or Bacteriorhodopsin 
(Popot et al. 1987)). Furthermore, the structure were solved by solution-NMR in 
detergent micelles (Hiller et al. 2008; Bayrhuber et al. 2008) as well as by detergent- 
(Bayrhuber et  al. 2008) and lipidic-based crystallization techniques (Ujwal and 
Abramson 2012; Ujwal et al. 2008) yielding the same 19 β-strand fold. The validity 
of the structure has been confirmed by numerous studies and methodology includ-
ing double electron-electron resonance (DEER) (Schredelseker et al. 2014), cross- 
linking (Teijido et al. 2012; Mertins et al. 2012), and the functional properties of the 
structure have been confirmed by molecular dynamics simulations and continuum 
electrostatics calculations – both of which agree well with the known physiological 

1 For a comprehensive list of all residues, on all multipass membrane proteins predicted to be elec-
trostatically destabilizing in the membrane, please see Ref. Marcoline et al. (2015).
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ion selectivity values, single-channel conductance values, and ATP permeation rates 
(Choudhary et al. 2014; Choudhary et al. 2010). To the best of our knowledge, there 
has not been a single study demonstrating that the 19 β-strand fold is incorrect.

6.3  Conduction Properties and Topology of VDAC

VDAC facilitates the flow of ions and metabolites through the mitochondria. Given 
its large pore size as revealed in the structures, it is not surprising that it exhibits a 
high conductance of 0.45–0.58 nS in 0.1 M KCl (Colombini 1989). VDAC’s func-
tional activity is routinely monitored electrophysiologically using planar bilayer 
systems. At low voltage, VDAC adopts an open state allowing ion permeation, with 
a slight anion selectivity of 1.7–1.9 chloride to potassium ions in a 1.0–0.1 asym-
metric gradient (Colombini 1989). A network of charged residues in the pore creat-
ing an electric field determines the ion selectivity of VDAC; at high salt concentration 
the charged residues get shielded and the selectivity decreases (Krammer et al. 2011), 
the channel is therefore more anion selective at low salt concentration. VDAC is 
also responsible for metabolite passage, at a flow of 2  × 106 ATP/s under saturating 
ATP conditions and an estimated 10,000 ATP/s under physiological values (at 1 mM 
ATP) (Rostovtseva and Colombini 1997). When the voltage is increased, either in 
the positive or negative direction, the conductance drops to ~0.5 of the open state, 
corresponding to a closing of the channel, resulting in a bell- shaped current voltage 
dependence (Fig. 6.5). The closed state displays a negligible metabolite flux but is 
still permeable to ions and becomes cation selective. There appears to be a single 
open state; however, the closed configuration is not unique and displays a number 
of low-conductance states.
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Fig. 6.5 Conduction properties of VDAC. (A) Conductance profile of mVDAC1 shows a bell- 
shaped curve with high conductance near 0 mV but reduced conductance at values below −30 mV 
and above +30 mV (Ujwal et al. 2008). (B) The electrostatic energy profile for anions (a) and 
cations (b) to move through the channel. The ion pathways traversed in panels a, b are shown from 
the side view from the membrane (c) and from the cytoplasm (d). The negative energy in panel a 
indicates that anions are favored in the pore (Reprinted from Choudhary et al. (2010) with permis-
sion from Elsevier)
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6.3.1  Computational Studies

The availability of the 3D structure provided a new platform to study VDAC’s 
function. The computational community was essential in validating the structures 
by relating the physiological properties observed from electrophysiological and 
biochemical experiments to the 3D architecture. Here we highlight a few of these 
studies, but a more extensive review on computational technics used to study 
VDAC can be found in Ref. Noskov et al. (2016).

6.3.1.1  Electrostatic Calculations

The structure revealed a large pore 27 Å in diameter, which is compatible with the 
high ion flux measured for the open state. This hypothesis was quantitatively probed 
using a combination of Poisson-Boltzmann (PB) electrostatic calculations and 
Poisson-Nernst Planck (PNP) theory (Choudhary et al. 2010). The PNP calculations 
revealed a large single-channel conductance incompatible with the closed state and 
1.8–2.3 times higher than the experimental value, which is a typical overestimation 
for this level of theory when applied to large pores (Im and Roux 2002). However, 
dramatic improvements of calculated conductance were made possible by the use of 
long molecular dynamic (MD) simulations (Choudhary et al. 2014), with a calcu-
lated value of 0.96 nS in 142 mM NaCl, close to the experimental range of 0.64 to 
0.83 nS under these conditions. Interestingly, the presence of ATP in the pore 
decreases VDAC conductance by 42%, perfectly corroborating the experimental 
result of 43% obtained on single channels in saturating ATP conditions (Rostovtseva 
and Bezrukov 1998). Furthermore, the calculations showed a slight preference for 
anions of 1.75 (Choudhary et al. 2010) in agreement with the experimental anion- 
to- cation selectivity values of 1.7–1.9 in 1 M KCl (Fig. 6.5). In summary, the elec-
trostatics and MD simulations exploring ion conduction are all quantitatively 
consistent with a high-conductance open state that is selective for anions (Choudhary 
et al. 2010; Rui et al. 2011; Krammer et al. 2011).

6.3.1.2  Metabolite Permeation

In a recent publication (Choudhary et al. 2014), the permeation pathways of ATP 
through mVDAC1’s pore were deduced using an innovative all-atom Markov state 
model approach – a first for membrane systems. The structure of VDAC in complex 
with ATP was also solved (Fig. 6.6) by soaking VDAC crystals in a high concentra-
tion of ATP (50 mM). The ATP presented a weak electron density, compatible with 
a low-affinity site, suggesting a high mobility in the pore. This structure (PDB code 
4C69) along with the apo structure (PDB code 3EMN) with ATP placed randomly 
in solution were used to seed molecular dynamics simulations to investigate ATP 
permeation through the VDAC pore.

Initially, several multi-microsecond-long simulations carried out using the Anton 
special-purpose supercomputer at the Pittsburgh Supercomputing Center failed to 
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reveal ATP permeation. Rather, ATP entered the channel pore from solution where 
it interacted with the N-terminal helix. As an alternative approach, a Markov state 
model of ATP permeation was constructed by combining hundreds of short simula-
tions (100–200 ns in length) together to determine how ATP moves through the 
pore. The simulations showed that ATP moves from one side of the channel to the 
other in many distinct pathways (top 5 shown in Fig. 6.6B) utilizing the complex 
network of basic residues facing the pore to “hop” from one position in the pore to 
the next. The predicted mean first passage time is 32 μs, and the average rate based 
on this MFPT is ~49,000 ATP/s – a result in excellent agreement with the experi-
mental value of 50,000 ATP/s recorded from Neurospora crassa VDAC channels 
recorded in high ATP concentrations and extrapolated down to 5 mM ATP 
(Rostovtseva and Colombini 1996). Thus, the ATP flux computed from the MSM 
again confirms that the crystallographic mVDAC1 structure represents the native 
open conformation.

6.3.2  VDAC’s Orientation in the Membrane

The high-resolution structures did not resolve the debate regarding VDAC’s orienta-
tion in the membrane, largely due to conflicting biochemical data. This information 
is essential, since VDAC is a known binding partner for OMM proteins as well as 
cytosolic and inner membrane space proteins; thus, the correct orientation of the 
channel is necessary to identify the binding motifs of those various partners. The 
structure revealed that both N- and C-termini face the same side of the membrane 
(Ujwal et al. 2008), which was clouded by earlier contradictory studies. Using a 
combination of antibodies against the N- and C-termini moieties, one study con-
cluded that both extremities where facing the IMS (Stanley et al. 1995). Contrary to 
this initial claim, a second study found that the N-terminus faces the cytosol and that 
the C-terminus was buried in the membrane (De Pinto et al. 1991). However, in 

Fig. 6.6 ATP permeation through VDAC. (A) Cartoon representation of mVDAC1 in complex 
with ATP (PDB code 4C69). (B) Representation of the five primary pathways of ATP permeation, 
dots represent the γ−phosphate of ATP. ATP permeates the pore via several distinct pathways each 
lined with basic residues that interact electrostatically with the phosphate group. The arrow indi-
cates the common entry point (Reprinted from Choudhary et al. (2014))
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2013, this issue was ultimately resolved through studies on VDAC1 in intact cells 
using a combination of two C-terminal tags on VDAC1 separated by a caspase 
cleavage site (Tomasello et al. 2013). These researchers conclusively demonstrated 
that both the N- and C-termini face the IMS of the mitochondria.

6.4  Gating

Since the biochemical and computational studies all indicate that the current VDAC 
structures represent the open state, the next structural hurdle is to define the closed 
state(s) and determine how the channel transitions between states. Importantly, it is 
likely that VDAC channels adopt multiple closed states. There are several known 
factors that can modulate gating – the transition from open to closed state – including 
pH (Teijido et al. 2014), voltage (Colombini 1989), lipid composition (Rostovtseva 
et al. 2006), and salt concentration (Colombini 1989). Although the conformation of 
the closed state is unknown, the transition from open to closed presumably involves 
large conformational rearrangements that both hinder the passage of metabolites 
and alter ion selectivity.

6.4.1  The N-Terminal Helix and Its Influence on Gating

Initial gating hypotheses, developed from visual inspection of the structure, were 
centered on movements of the N-terminal α-helix. The helix lines the center of the 
pore causing the diameter to taper from 27 Å at the ends to 14 Å at the center 
(Fig. 6.2), yet this restriction does not hinder metabolite transport (Choudhary et al. 
2014). It was originally postulated that a displacement of the helix away from the 
wall toward the center of the pore would narrow the cavity even further preventing 
metabolite permeation (Ujwal et al. 2008; Tornroth-Horsefield and Neutze 2008). 
Moreover, the helix is rich in charged amino acids and may act as the voltage sensor 
to facilitate voltage gating, as previously described (Colombini 1989).

This hypothesis was first questioned through the use of continuum electrostatic 
calculations in which two distinct gating scenarios were evaluated (Choudhary et al. 
2010). First, the helix from the mVDAC1 structure was rigidly displaced toward the 
center of the pore to a position that would dramatically reduce the space available 
for metabolite permeation (a), and second, the helix was completely removed from 
the pore (b) leaving only the 19-stranded barrel with a wider pore domain (Fig. 6.7D). 

Fig. 6.7 (continued) (D) Voltage dependence of gating for mVDAC1 X-ray structure compared to 
two hypothetical gating motions. In panel (a) the N-terminal helix is moved from the wall to the 
center of the pore. In panel (b) the helix is moved out of the pore. The motion in (a) produces no 
voltage-dependent energy change in the system (blue line in panel c), while the motion in (b) 
produces a modest voltage dependence corresponding to 1.5 gating charges (red line in panel c) 
(Reprinted from Choudhary et al. (2010) with permission from Elsevier)
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Two electrophysiological signatures were used to probe the likelihood that these 
altered structures had properties of the closed state: (i) the voltage dependence of 
the gating motion from open to the hypothetical closed state and (ii) the selectivity 
of the hypothetical closed state. The first quantity indicates how sensitive the gating 
motion is to changes in the membrane voltage, and the parameter that is used to 
quantify this sensitivity is the gating charge. This value is the equivalent number of 
fundamental charge units that pass all the way through the membrane electric field 
during the gating motion. Channels that are very sensitive to membrane voltage, like 
voltage-gated potassium channels, exhibit gating charge values between 12 and 14 
(Schoppa et al. 1992), and VDAC has a much weaker dependence measured between 
2.5 and 4.5 (Colombini 1989; Hiller et al. 2008). As discussed previously, the sec-
ond physiological property of the closed channel is a slight preference for cations 
over anions. Analysis of both gating scenarios revealed they failed on both accounts. 
Both hypothetical closed state models remained anion selective, and the helix hinge 
motion in the first scenario produce no gating charge at all, while the second helix 
remove motion only produces a charge of 1.5 – both well below the experimental 
range of 2.5–4.5 charge units. While these specific transitions are not correct, the 
calculations could not rule out a more complex movement of the N-terminal helix 
in combination with other channel conformational changes.

Next, to experimentally test the N-terminal gating model, we employed a combi-
nation of electrophysiology and cross-linking experiments (Teijido et al. 2012). The 
N-terminal α-helix was affixed to the wall of the barrel by creating a covalent bond 
between Leu-10 and Ala-170 (Fig. 6.7A). Cross-linking was monitored using tetra-
methylrhodamine (TMRM) (Chaptal et  al. 2010) and band-shift on SDS-PAGE 
(Fig. 6.7B). The effects of the fixation of the helix on gating were monitored in 
planar lipid bilayers, where the N-terminal cross-linked VDAC formed functional 
channels of conductance and gating behavior similar to the WT (Fig. 6.7C). This 
study answered several important questions. First, it was an additional validation of 
the crystal structure showing that cross-links designed based on the structure could 
readily be formed in functional studies in the bilayer. Second, the results demon-
strated that the gating motion does not involve independent movements of the 
N-terminal helix with respect to strand 11 on the wall. Surprisingly, another study 
using similar methodology revealed “asymmetric” gating behavior and preferential 
selection to a specific closed state (Mertins et al. 2012). Additional experimental 
studies using a wide array of methodologies coupled with validation through gating 
charge and selectivity calculations will be required to understand the implication of 
the N-terminal helix in gating.

6.4.2  A Major Rearrangement of the Barrel

An alternative model of gating is emerging in which the channel elongates in the 
direction of the principal axis of the N-terminal helix (Teijido et al. 2012; Zachariae 
et al. 2012). This motion involves VDAC morphing from a cylindrical shape to an 
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ovular configuration that significantly constricts the pore potentially preventing 
metabolite passage through steric effects. Consistent with this barrel-constriction 
hypothesis, MD simulations revealed that VDAC is a flexible barrel that undergoes 
breathing motions (Villinger et  al. 2010). This flexibility is also reflected in the 
crystallographic b-factors (Ujwal et al. 2008) and the ensemble of structures pro-
duced by NMR measurements in solution (Hiller et al. 2008).

Investigating this gating mechanism, Zachariae et  al. (2012) carried out MD 
simulations under applied lateral pressure using a model of mVDAC1 that lacked 
the N-terminal helix and observed that the channel entered a semi-collapse state 
inducing an elliptical barrel shape. While this study represents an important step 
toward understanding channel gating, there are several concerns and unanswered 
questions: (i) in the presence of the N-terminal helix, this elliptic semi-collapsed 
state could not be reached, probably because the helix stabilizes the barrel structure, 
(ii) the elliptic states do not match the cation selectivity observed in the closed state 
of VDAC, and (iii) the gating charge of this motion was not determined.

From a structural standpoint, investigating VDAC’s closed state and gating 
mechanism is a challenging task due to the difficulty of inducing the closed state 
in vitro. Indeed, voltage, used to induce gating in lipidic bilayers, cannot be used in 
solution nor in classical structural biochemistry methods such as NMR or X-ray 
crystallography. However, other parameters shown to improve gating, such as low 
pH (Teijido et al. 2014), pressure (Rostovtseva et al. 2006), or salt concentration 
(Colombini 1989), can be valuable tools to investigate gating.

6.5  Oligomerization

Several lines of evidence suggest that VDAC can adopt various oligomeric states in 
many different environments ranging from the native mitochondrial membrane to 
detergent micelles. Clearly this is an area for further investigations as VDAC oligo-
merization is suggested to play a large role in apoptosis (Keinan et al. 2010; Zalk 
et al. 2005).

In 2007, prior to the publication of the first high-resolution structures, atomic 
force microscopy (AFM) studies on the outer mitochondrial membrane of potato 
tubers (Hoogenboom et al. 2007) and Saccharomyces cerevisiae (Goncalves et al. 
2007) revealed the organization of VDAC in its native lipidic environment. These 
studies revealed pores 38 Å wide, which nicely match the diameter values observed 
in the high-resolution structures. The AFM images showed the presence of mono-
mers, dimers, tetramers, hexamers, and even higher-order oligomers, suggesting 
that VDAC certainly self-interacts, but the most frequent pore-to-pore distance 
observed was 53 Å, corresponding to two neighboring pores (Goncalves et al. 2007).

Analysis of crystal packing gave hints to the dimeric organization of VDAC. 
mVDAC1 crystallizes as an antiparallel dimer (Ujwal et al. 2009), and thus, this 
interaction is very unlikely to have a physiological relevance, since it is hard to 
imagine that the channel inserts into the OMM in more than one topological 
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 arrangement. However, both hVDAC1 (Bayrhuber et  al. 2008) and zfVDAC2 
(Schredelseker et al. 2014) interact as parallel dimers in solution and in the crystal, 
respectively, with inter-protein interactions occurring across strands, β1, β2, β17, 
β18, and β19. For both channel isoforms, cross-linking experiments in detergent 
micelles validated the dimeric association.

6.6  Protein Interactions and Metabolite Binding

6.6.1  Metabolite Binding

VDAC is responsible for metabolite passage between the cytosol and the mitochon-
dria. The most characterized metabolite transported by VDAC is ATP, which can 
flow through the open state at a rate of two million molecules per second in vitro 
under saturating ATP concentrations and up to 10,000 molecules/s under physiolog-
ical conditions (Rostovtseva and Colombini 1996, 1997). With such a high flux, it is 
not surprising that all reported metabolites binding to VDAC have low affinities, 
which makes identifying potential binding sites in the channel difficult. A structure 
of mVDAC1 in complex with ATP was obtained by soaking crystals in a 50 mM 
ATP solution, revealing a weak binding site for ATP inside the pore, where it associ-
ates with basic residues on the N-terminal helix (Fig. 6.6A) (Choudhary et al. 2014). 
This structure confirms predictions from earlier experiments suggesting that ATP 
weakly interacts with VDAC’s pore (Rostovtseva and Bezrukov 1998; Rostovtseva 
et al. 2002; Yehezkel et al. 2006). Mass spectrometry was used to reveal two ATP 
binding site regions – one in the N-terminal helix and another in the region between 
positions 110–120 of the barrel (numbering in mVDAC1 and hVDAC1) (Yehezkel 
et al. 2006). The findings from mass spectrometry were later corroborated by the 
co-crystal structure and molecular dynamic simulations of ATP permeation through 
the pore, which showed that the phosphate tail of ATP interacts with residues Lys- 
113 and Lys-115 on β-barrel wall as well as basic residues Lys-12, Arg-15, and 
Lys-20 on the helix (Choudhary et al. 2014; Noskov et al. 2013).

The NMR structure of hVDAC1 revealed an additional interaction site for the 
small-molecule NADH on β-strands 17 and 18 implicating 6 residues (Gly-242, Leu-
243, Gly-244, Ala-261, Leu-263, Asp-264) (Hiller et al. 2008). However, all those 
amino acid side chains are facing out of the pore, indicating a binding of the molecule 
that would be more a regulatory role than for transport. The crystal structure of 
mVDAC1 clearly indicates that there is not sufficient space to bind a NADH mole-
cule at this specific position. Nonetheless, the described NADH-binding site is 
located in the vicinity of the flexible region of the N-terminal segment where the 
helix unwinds and enters β-strand 1, suggesting that binding of NADH in this area 
could possibly trigger a structural change in this connecting region between the two 
structural domains of the helix and barrel. In addition to ATP and ADP, a number of 
glycolysis intermediates like pyruvate and malate must make their way through the 
OMM into the IMS through VDAC. In total, there is still very little data on metabolite 
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binding to VDAC, how molecules move through the channel, and how small  molecule 
binding might bias the conformation of the channel. An important future goal is to 
design experiments to uncover more of these interaction sites, understand how 
 binding impacts the channel structure, and conversely understand how the channel 
structure aids small-molecule passage into and out of the mitochondria.

6.6.2  VDAC’s Interaction with Protein Partners

In addition to being the primary shuttle for ATP and ADP movement across the 
outer membrane, VDAC is also an essential component of mitochondrial regulation, 
which it orchestrates through its binding with various protein partners. There are 
many reports of VDAC binding to other proteins in the OMM, such as the transloca-
tor protein (TSPO) (Fan and Papadopoulos 2013), the proteins forming the mito-
chondrial permeability transition pore (mPTP) (Shoshan-Barmatz et  al. 2008), 
proteins of the inner mitochondrial membrane (IMM) like ANT (Vyssokikh and 
Brdiczka 2003), as well as cytosolic proteins, such as hexokinase (De Pinto et al. 
1993; Shoshan-Barmatz et al. 2015) and tubulin. Tubulin binding to VDAC results 
in an interaction that impedes metabolite passage (Rostovtseva and Bezrukov 2008), 
suggesting a powerful way in which cytoplasmic signals could influence energy 
production by the mitochondria. With the availability of both VDAC and tubulin 
structures, a hypothetical docking model was generated (Noskov et  al. 2013) in 
which the negatively charged C-terminal tail of tubulin slides into the positively 
charged pore of VDAC causing occlusion of the pore that would sterically block 
ATP passage.

VDAC is also regulated by proteins in the Bcl2 family of proteins (Bak, Bax, and 
tBid) that control cellular apoptosis. During the early stages of apoptosis, caspase 
activation induces truncation of Bid to form tBid. tBid then relocates to the OMM 
triggering oligomerization of Bak into homo-oligomers and hetero-oligomers con-
taining Bax and Bak (Wei et al. 2001; Korsmeyer et al. 2000). This oligomerization 
process leads to the permeabilization of the OMM. VDAC2 is specifically required 
for Bak import to the outer mitochondrial membrane and tBid-induced apoptosis 
(Cheng et al. 2003; Roy et al. 2009). In 2015, an elegant study used the structural 
information from mVDAC1 and zfVDAC2 to design protein chimeras between 
VDAC1 and VDAC2 to perform a rescue assay in VDAC2−/− fibroblasts (Naghdi 
et al. 2015). These chimeras identified the structural motif of VDAC2 necessary for 
Bak and tBid recruitment and induction of apoptosis. This study not only provided 
further validation that the VDAC1 and VDAC2 structures are biologically relevant, 
since the chimeras based on them were successful, but also pinpointed two critical 
residues in VDAC required for Bak recruitment, Thr-168 and Asp-170. Both of 
these residues are located on the cytoplasmic side of β-strand 10 of VDAC2 posi-
tioned in an ideal place to interact with a soluble protein in the cytoplasm. 
Superposition of the mVDAC1 structure onto zfVDAC2 revealed a binding pocket 
in VDAC2, positioned on the cytoplasmic side of the membrane (Naghdi et al. 2015). 
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This site could explain the specificity of VDAC2 for tBid and Bak binding (Naghdi 
et al. 2015). Interestingly, even though zfVDAC2 differs from mammalian VDAC2 
due to its lack of the N-terminal extension and the absence of several cysteines 
(Fig. 6.1), it is able to recruit Bak and cause apoptosis in mouse embryonic fibro-
blasts, indicating that zfVDAC2 is a suitable model for mammalian VDAC2.

While valuable information is available both for tubulin and Bak interaction with 
VDAC, verification of the binding configuration via structural techniques is miss-
ing, yet essential for furthering our understanding of the regulation of outer mem-
brane transport and mitochondria-mediated apoptosis.

6.7  Conclusion and Perspectives

During the last 8 years, impressive progress has been made toward understanding 
VDAC’s function. Most of the new data acquired over this time would not have been 
possible without the availability of a high-resolution 3D structure, yet there are still 
many challenges ahead.

Going forward, the field must continue to probe the specific physiological roles 
of all three VDAC isoforms. From a structural and biophysical approach, gating 
remains a fundamental target: understanding the nature of the closed state and the 
gating mechanism of VDAC will provide a breakthrough in the understanding of 
VDAC function and mitochondrial regulation. What does the closed state look like, 
and how does VDAC transition from an open to a closed conformation? It appears 
that the closed conformation may not be a stable state, and as such, the use of con-
ventional structural techniques may fail, and we may have to turn to alternative 
methods that capture dynamic processes. Finally, from a structural standpoint, 
VDAC complexes are clearly an obtainable goal but require the formation of stable 
complexes between VDAC and binding partners. Taken together, the regulation of 
ion and metabolite permeation through VDAC depends on both channel gating and 
the channel’s interaction with protein-binding partners. These various mechanisms 
likely give rise to a rich set of channel biophysical properties that cannot be described 
by a simple two-state gating model. As we uncover this new information, we will 
gain a deeper understanding of VDAC’s ability to regulate the mitochondria under a 
diverse set of physiological conditions.
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Chapter 7
Plant VDAC Permeability: Molecular Basis 
and Role in Oxidative Stress
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Abbreviations

BiFC Bimolecular fluorescence complementation
HK and HXK Hexokinase
Trx Thioredoxin
VDAC Voltage-dependent anion channel

7.1  Introduction

The plant mitochondria are the place of a variety of processes including respiratory 
substrate oxidation, ATP synthesis, calcium and redox signaling, and regulated cell 
death. Their biochemical activity requires exchange of ions and molecules through the 
mitochondrial outer membrane (MOM) and the mitochondrial inner membrane (MIM). 
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Due to the coordination of the metabolic pathways between different cellular 
 compartments, they also play a role in other plant cellular processes such as photosyn-
thesis, photorespiration, and nitrogen metabolism (Sweetlove et  al. 2002; Dutilleul 
et al. 2003; Foyer et al. 2011; Bauwe et al. 2012; Araújo et al. 2014).

The voltage-dependent anion-selective channel (VDAC) is the major protein in 
plant MOM (Mannella and Bonner 1975). It is the main transport pathway for ions 
(Krammer et al. 2014), metabolites (Alcántar-Aguirre et al. 2013; Krammer et al. 
2015), and nucleic acids (Koulintchenko et al. 2003; Salinas et al. 2006, 2008). By 
using molecules of increasing size, it has been shown that VDAC of mung bean has 
a size exclusion limit of about 5 kDa (Zalman et al. 1980). Like VDAC of other 
organisms, VDAC isolated from different plants is voltage-dependent after reconsti-
tution in a planar lipid bilayer. This denotes that at voltage |V|≥20 mV, the channel 
exhibits transition between the open state and lower conductance states. This change 
in conductance might be of prime importance for the physiological role of plant 
VDAC because it has been shown that VDAC from Neurospora crassa is permeable 
to ATP in the open state but not in the subconductance states (Rostovtseva and 
Colombini 1996, 1997). This change in permeability to metabolites suggests that 
VDAC may not only facilitate but also control the metabolic flux through MOM.

Phylogenetic analysis points to an early evolutionary divergence of VDAC. VDAC 
from algae, plant, fungi, and animals belong to different clades. This suggests that 
they all derive from a common ancestor (Young et al. 2007; Homblé et al. 2012). 
Despite differences in their amino acid sequence, at least one VDAC isoform (named 
“canonical VDAC”) in each clade bears extremely conserved structural and func-
tional features. For instance, the most abundant mammalian isoform VDAC1 shares 
similar basic electrophysiological properties, secondary structure, and fold with the 
most abundant VDAC isoform of plants and fungi (e.g., Colombini 1989; Homblé 
et al. 2012; Mertins et al. 2014).

Plant VDAC proteins were purified and characterized from maize (Smack and 
Colombini 1985; Aljamal et al. 1993), potato tuber (Heins et al. 1994), pea seedlings 
and roots (Schmid et al. 1992; Fischer et al. 1994; Clausen et al. 2004), wheat seed-
lings (Blumenthal et al. 1993), and runner bean seeds (Abrecht et al. 2000b). The 
conductance, ion selectivity, and voltage dependence of these VDACs are very simi-
lar and correspond to isoforms highly abundant in the tissue used for purification. 
Two major mitochondrial VDAC isoforms were purified from bean and lentil seed 
cotyledons (Abrecht et al. 2000b) and potato tubers (Heins et al. 1994). However, 
proteomics studies indicate that more VDAC protein isoforms exists in plant tissues. 
For instance, there is a perfect matching between the transcriptomic and proteomic 
data for the model plant Arabidopsis thaliana, indicating the existence of four 
VDAC protein isoforms (Marmagne et  al. 2004; Heazlewood et  al. 2004; Tateda 
et al. 2011; Rao et al. 2016). The “green plants” (Viridiplantae) VDACs are encoded 
in the nuclear genome and belong to a small multigene family which is larger than 
that found in mammals (three) and fungi (two but only one in Neurospora crassa). 
Most green plants are sessile, and this large diversity of VDAC genes might be the 
source of more physiological plasticity to cope with environmental stresses. In plant, 
abiotic and biotic stresses are known to impact mitochondrial function and to be 
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correlated with ROS imbalance known to alter VDAC permeability in mammalian 
and yeast mitochondria (Rostovtseva et al. 2006; Owsianowski et al. 2008; Homblé 
et al. 2012; McCommis and Baines 2012; Takahashi and Tateda 2013).

The 3D structure of the mouse and human VDAC isoform1 (VDAC1) and that of 
the zebrafish VDAC isoform2 (VDAC2) was resolved at atomic resolution (Hiller 
et  al. 2008; Bayrhuber et  al. 2008; Ujwal et  al. 2008; Schneider et  al. 2010; 
Schredelseker et al. 2014). They all display a common fold, which consists in a 19 
β-strands β-barrel and 1 N-terminal helical segment lying inside the pore parallel to 
the membrane plane at about mid-height of the channel. This structure corresponds 
most probably to the open state of VDAC. There are clues suggesting that this struc-
ture might be conserved at least in the canonical VDACs of the different phyloge-
netic clades because (a) amino acid sequence analysis has put forward the presence 
of conserved motifs, long stretches of alternating hydrophobic and hydrophilic 
amino acid residues typical of β-barrel structure and a region featuring properties of 
α-helix at N-terminus (Young et al. 2007; Kutik et al. 2008; Imai et al. 2011; Homblé 
et al. 2012; Jores et al. 2016); (b) the barrel fold is also confirmed by circular dichro-
ism (CD) and attenuated total reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy (Shao et al. 1996; Abrecht et al. 2000a; Shanmugavadivu et al. 2007); 
and (c) the electron and atomic force microscopy images corroborate the 3D struc-
ture (Hiller et al. 2010).

In its open state, VDAC possesses a slight preference for inorganic monatomic 
anions over cations (Smack and Colombini 1985; Schmid et al. 1992; Blumenthal 
et al. 1993; Heins et al. 1994; Abrecht et al. 2000b). Remarkably, most inorganic 
ions, metabolites, and tRNA transported through VDAC are negatively charged. 
This raises the question of the mechanism(s) used to transport such diverse 
compounds.

In this review, we address two key functional issues about plant VDAC: (1) How 
inorganic ions and metabolites are transported through the pore? (2) What is the role 
of VDAC in the response of plant cells to oxidative stress? For this purpose, we 
compare the data available for plants and other organisms to highlight the similari-
ties and differences between orthologues.

7.2  Transport and Selectivity

The main physiological role of VDAC is the transport of chemical compounds of 
varying size, composition, structure, and charge, e.g., K+, Cl−, Ca2+, HPO4

2−, succi-
nate2−, ATP4−, or highly charged tRNA through MOM.  Since the discovery of 
VDAC from Paramecium aurelia mitochondria (Schein et al. 1976), the transport 
function of VDAC has been investigated by electrophysiology following its recon-
stitution in a planar lipid bilayer. For the sake of clarity, we describe separately the 
transport of inorganic monatomic ions (consisting of a single atom) and that of 
inorganic polyatomic ions (consisting of several atoms) and metabolites.

7 Plant VDAC Permeability: Molecular Basis and Role in Oxidative Stress
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7.2.1  Inorganic Monatomic Ions

The functional properties of plant VDAC were mainly inferred from transport 
 studies of inorganic monatomic ions (K+, Na+, Cl−). The obtained data indicate that 
the open state of plant VDAC can sustain a flow of about 107ions/s in the presence 
of 0.1MKCl and 10 mV and its selectivity for chloride ions over potassium ions is 
weak (~2Cl−:1 K+) (Smack and Colombini 1985; Aljamal et al. 1993; Blumenthal 
et al. 1993; Heins et al. 1994; Abrecht et al. 2000b). These values are akin to those 
found for VDACs of other organisms (Colombini 1989).

The experimental parameter measured to get information on the channel selec-
tivity is the reversal potential, which is a voltage set up in the presence of a salt 
concentration gradient across the membrane when there is no net flow of ions (zero 
current) through the channel. Knowing the value of the reversal potential (mV), an 
electrodiffusion model is required to quantify the selectivity. Two models are com-
monly used: the Planck model and the Goldman-Hodgkin-Katz model. Solving the 
Nernst-Planck equation under the assumption of either electroneutrality (Planck) or 
constant electric field (Goldman-Hodgkin-Katz) in a channel gives two simple 
equations to quantify the selectivity (Krammer et al. 2014). The Goldman-Hodgkin- 
Katz equation, commonly known as GHK equation, is the most popular one and 
was applied to quantify the selectivity of plant VDAC using the value of reversal 
potential measured at a single high salt concentration gradient (e.g., 1 M/0.1  M 
KCl) across the membrane. Surprisingly, in a recent work on VDAC purified from 
Phaseolus coccineus (PcVDAC) (Krammer et  al. 2014), it has been shown that 
PcVDAC selectivity value calculated by GHK equation changes with KCl concen-
tration gradient, which disagrees with the assumption of a constant permeability 
ratio in the GHK model. Moreover, the GHK equation did not fit properly to the data 
showing the change in reversal potential versus the concentration gradient (Krammer 
et al. 2014). The inappropriateness of the GHK and Planck models for the descrip-
tion of the selectivity was further demonstrated in an experiment showing the 
change in reversal potential as a function of salt concentration, at a constant KCl 
concentration gradient across the membrane (Fig. 7.1). Under the condition of the 
constant gradient, the two equations predict that the reversal potential is constant 
whatever the salt concentration is and are in contradiction with the experimental 
results showing that the selectivity toward chloride ion increases at low KCl con-
centration. The dependence of the reversal potential on the salt concentration indi-
cates the involvement of positive-charged amino acid residues at low salt 
concentration and their screening at high concentration.

The PcVDAC selectivity was correctly predicted taking into account the net 
fixed charge in the pore of the channel. A one-compartment macroscopic electrodif-
fusion model including both ion diffusion and an effective fixed charge in the pore 
was sufficient to describe properly the selectivity of the channel (Fig. 7.1). Thus, in 
agreement with published data on yeast Saccharomyces cerevisiae (Blachly-Dyson 
et al. 1990; Peng et al. 1992; Zambrowicz and Colombini 1993), the fixed charge in 
the pore governs the selectivity of plant VDAC.
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Several plant genomes have been sequenced. The sequences coding for putative 
VDAC proteins indicate that in plant VDACs, the number of positively charged 
amino acids is equal or higher than that of negatively charged amino acids (Fig. 7.2), 
which is consistent with a selectivity favoring chloride ions relative to potassium 
ions. However, an accurate assessment of the selectivity would require knowledge 
of the charge distribution within the protein structure.

The electrostatic screening effect is also clearly evidenced when the VDAC con-
ductance normalized in respect to the bulk concentration (G/[KCl] ratio) is plotted 
versus the bulk concentration (Fig. 7.3).

At low KCl concentration (0.1 M), the screening of the fixed charges of the chan-
nel is weak, which favors the accumulation of chloride ions inside the channel 
because of the excess of positive fixed charges. Consequently, both G/[KCl] ratio 
and selectivity toward chloride increase. At high KCl concentration (1 M), there is 
a strong screening of the fixed charges, and VDAC behaves like a wide neutral pore. 
Thus, the ion concentration inside the channel will be close to that in solution, and 
thus, the G/[KCl] ratio reaches its lowest value. At 1 M KCl, the selectivity toward 
chloride ions is weak because the diffusion coefficient of chloride and potassium 
ions has a similar value. As shown in Figs. 7.1 and 7.3, the fixed charge has a major 
impact on the G/[KCl] ratio and selectivity at concentrations that prevails in vivo. 
Therefore, the measurement of the reversal potential at high concentrations is of 
limited interest to assess plant VDAC selectivity because of the electrostatic screen-
ing effect.

Molecular modeling has been used to get insight into the microscopic mecha-
nism for the monatomic ions transport through VDAC. Different simulation 

Fig. 7.1 Effect of ionic strength on the reversal potential of PcVDAC at a fixed concentration ratio 
trans/cis = 2. A nonlinear least square regression was used to fit the data to a fixed charge model 
(continuous line) (DCl/DK = 1.02, effective fixed charge concentration X = 0.1 M, goodness of the 
fit R2 = 0.994). The reversal potential calculated using the voltage GHK equation (with the PCl/PK 
= 1.10 at concentration ratio 2/1 M KCl (trans/cis)) is shown as a dashed line (Reprinted with 
permission from Mitochondrion (Krammer et al. 2014) with slight modification)
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Fig. 7.2 Net charge of plant VDAC proteins. Data were obtained from a set of 80 gene sequences 
encoding putative VDAC proteins retrieved from full-sequenced genomes of representatives of 16 
different plant genera (https://phytozome.jgi). These VDAC proteins contain from 274 to 280 
amino acids and have theoretical isoelectric point (pI) consistent with the data found for VDAC in 
2D-PAGE. The number attached to the symbol indicates the number of sequences with the speci-
fied net charge with an average value of 3.5 ± 2.3 (mean ± S.D.)

Fig. 7.3 VDAC conductance normalized in respect to the bulk concentration (G/[KCl] ratio) as a 
function of plotted versus the bulk concentration

F. Homblé et al.
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 techniques have been used to investigate the structure-function relationship of 
VDAC (Noskov et al. 2013). They require the knowledge of the protein structure at 
an atomic resolution, which does not exist for plant VDAC. The PcVDAC and the 
mouse VDAC1 (mVDAC1) share similar electrophysiological and secondary 
structure features suggesting a conserved mechanism of ion transport and a similar 
folding. Thus, a 3D model of PcVDAC was constructed using homology modeling 
and the 3D structure of mVDAC1 determined at a resolution of 2.3 Å as template 
(Homblé et  al. 2012). It features an electrostatic energy ion profile, a β-strand 
dynamics, and a distribution of the hydrophobic and charged residues comparable 
to those of mVDAC1 (Homblé et al. 2012). These similarities do not prove that the 
model is the right structure, but they provide a rational basis to use it as a working 
hypothesis to interpret the data collected on plant VDACs. The conductance and 
selectivity values of the PcVDAC 3D model calculated using Brownian dynamics 
(BD) simulations are consistent with the experimental data, albeit some discrepan-
cies are observed. In addition, BD and molecular dynamics (MD) simulations per-
formed for mVDAC1 structure reproduce properly the concentration dependence 
of the PcVDAC selectivity (Fig. 7.4) (Krammer et al. 2011, 2013, 2014). The free 
energy profile of the ion translocation along the pore of mVDAC1 shows a concen-
tration dependence (Fig. 7.5). The free energy profile of chloride ions is lower than 
that of potassium ions favoring the transport of chloride ions. The difference 
between the free energy profiles of these ions decreases at high salt concentration 
in agreement with the weakest selectivity observed for PcVDAC at 1 M KCl. The 
maximum of the free energy profile of ion permeation coincides with the channel 
region made up of the N-terminal helix and the surrounding beta-barrel strip, 
which might be the rate-limiting step for ion transport through VDAC. These con-
clusions are consistent with results obtained by BD and MD simulations on 
mVDAC1 (Krammer et al. 2011, 2013). MD also shows that ion transport through 

Fig. 7.4 Effect of ionic 
strength on the reversal 
potential of PcVDAC at a 
fixed concentration ratio 
trans/cis = 2. The reversal 
potential computed from 
BD trajectories of 
mVDAC1 (circle, dashed 
line) and experimentally 
determined on PcVDAC 
(square, solid line) 
(Reprinted with permission 
from Mitochondrion 
(Krammer et al. 2014))
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mVDAC1 is driven by the global electrostatics due to the distribution of charges in 
the pore and not by specific pathways or interactions with amino acid residues 
(Krammer et al. 2011).

In regards to the transport process of inorganic monatomic ions through VDAC, 
the molecular simulations emphasize the major role of the nonuniform charge dis-
tribution in VDAC pore. Despite the simplistic assumptions underpinning the mac-
roscopic model, it is remarkable that it fits pretty well to the experimental data, and 
thereby, it provides an easy practical way to quantify the selectivity measured 
experimentally. The preference for anions relative to cations serves the major physi-
ological role of VDAC, i.e., the transport of metabolites, most of which are anions. 
This major VDAC function might have undergone pressure of the natural selection, 
which might explain the conserved transport process of metabolites between the 
different phylogenetic clades. In agreement with this suggestion, the weak VDAC 
selectivity of all species studied for monatomic inorganic ions appears as a conse-
quence of the electrostatic properties of the pore (Colombini 2016).

7.2.2  Inorganic Polyatomic Ions and Metabolites

The major function of mitochondria is the transformation of energy for cellular 
needs. This requires the exchange of inorganic polyatomic ions (e.g., H2PO4

−, 
HPO4

2−) and metabolites (e.g., ADP2−, ATP4−, succinate2−) between the mitochon-
drial matrix and the cytosol. The experiment with purified VDAC from Neurospora 
crassa (NcVDAC) has provided indirect and direct evidences for the permeation of 
several compounds through VDAC. The flux through VDAC estimated from selec-
tivity measurement indicated that VDAC can discriminate between different com-
pounds according to the sequence H2PO4

−>HPO4
2− = succinate2−>citrate3− and that 

the flux of these compounds is strongly reduced when VDAC switched from the 

Fig. 7.5 Ion 
concentration-dependent 
energy profile of 
mVDAC1. Chloride (solid 
lines) and potassium 
(dashed lines) 
concentration-dependent 
energy profiles computed 
from BD simulations 
performed at 0.1 M (red), 
0.25 M (blue), 0.5 M 
(cyan), 0.8 M (orange), 
and 1.0 M (black) KCl 
(Reprinted with permission 
from Mitochondrion 
(Krammer et al. (2014)))
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open to a subconductance state (Hodge and Colombini 1997). The specificity of 
nucleotide-VDAC binding was shown for mammalian VDAC by the channel label-
ing with [α-32P] BzATP in the presence of various nucleotides (Yehezkel et  al. 
2006). Combining electrophysiology and luciferin/luciferase assay, Rostovtseva 
and Colombini (1996, 1997) have achieved a direct evidence demonstrating that 
ATP4− permeates VDAC in the open state but not in subconductance states. Assuming 
ATP concentration of 1–10 mM and a voltage of 10 mV, one can estimate that ATP 
can permeate VDAC at a rate of about 104–105 ATP/s, i.e., at least two order of mag-
nitude lower than that of monatomic inorganic ions. The dependence of ATP flux 
through VDAC channel on ATP concentration is linear up to 100 mM ATP suggest-
ing a low-affinity binding site, which is required for an efficient translocation rate.

The VDAC occupancy by ATP interferes with the permeation of inorganic mona-
tomic ions, which results in a decrease of VDAC conductance (Rostovtseva and 
Bezrukov 1998). Thus, the change in conductance is an indirect way to probe the 
occupancy of VDAC channel by metabolites. Mononucleotides (AMP2−, ADP3−, 
UTP4−) and dinucleotides (NAD−, NADH2−, and NADPH4−) were found to decrease 
the NcVDAC conductance (Rostovtseva et al. 2002). Accordingly, the conductance 
of mouse VDAC2 and PcVDAC decreases in the presence of ATP (Komarov et al. 
2005; Krammer et al. 2015). In the case of PcVDAC, the decrease in channel con-
ductance is larger in the presence of ATP than AMP. The magnitude of the conduc-
tance change is attenuated at high salt concentration (1 M) (Krammer et al. 2015) 
probably due to the electrostatic screening of the metabolites and channel fixed 
charge.

Altogether, these experimental results point to a common mechanism of metabo-
lite transport shared by VDACs of all organisms. They emphasize firstly that VDACs 
are channels for the transport of metabolites and organic polyatomic ions and sec-
ondly that they may regulate the flow of these compounds. The regulatory property 
is related to a change in VDAC conductance. Though it is well established that this 
change in conductance can be triggered by a change in the membrane potential, 
there is numerous evidences concerning mammalian cells that it could be also 
induced by interaction with proteins, peptides, or small compounds (Rostovtseva 
and Bezrukov 2008, 2012; Shoshan-Barmatz et al. 2010). For example, NADH was 
found to regulate the gating of potato tuber VDAC (Lee et al. 1994; Zizi et al. 1994).

MD simulations of H2PO4
− diffusion through mVDAC1 revealed a permeation 

process very similar to that of chloride ions. Thus, both free energy profiles of per-
meation displayed the same features, and no specific pathway was reported for the 
monovalent anion H2PO4

−
, though a few long-lived interactions with some amino 

acid residues were noticed (Krammer et al. 2015). A completely different scenario 
was found for the permeation of the divalent anion HPO4

2−, which followed a spe-
cific pathway and long-lasting interactions with a limited number of positively 
charged amino acid residues: K12, R15, K20, K96, K119, and R218 (Krammer 
et al. 2015).

The molecular simulation of metabolites permeation through VDAC is all but 
trivial. According to the experimental flux measurements (Rostovtseva and 
Colombini 1996), the transport of one ATP through the VDAC lasts about 10–100 μs, 
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and this is a major bottleneck regarding MD simulations. Several approaches were 
used to unravel the mechanism of ATP permeation by the use of molecular simula-
tion (Noskov et al. 2013). They all indicated that the phosphate moiety of ATP inter-
acts with positively charged amino acid residues of the pore (R15, K20, K96) and 
point the N-terminus α-helix as a probable weak binding site for ATP (Noskov et al. 
2013; Choudhary et al. 2014; Krammer et al. 2015) that corresponds to experimen-
tal data (Yehezkel et al. 2006, 2007; Villinger et al. 2014). As ATP, AMP interacts 
with the binding site but more weakly. Though there is a general agreement about 
the identification of the binding site, the question on how ATP arrives to and leaves 
from the binding site is a matter of debate. Choudhary et al. (2014) identified five 
different pathways for ATP permeation, while Krammer et al. (2015) pointed to a 
preferential pathway recruiting K12, R15, K20, K96, K119, and R218. Their key 
position in the structure and their long and flexible side chains might favor the per-
meation of the phosphate ions and metabolites through VDAC via a brush-like 
mechanism (Yehezkel et  al. 2006; Villinger et  al. 2014; Krammer et  al. 2015) 
(Fig. 7.6). Even though the occurrence of long-lasting interaction between H2PO4

− 
and some amino acid residues is relatively less frequent, it occurs notably with R15 
and K20 of the binding site. Thus, according to the minimum in the free energy 

Fig. 7.6 The charged brush mechanism of VDAC.  Schematic representation of the positively 
charged key residues acting as a charged brush to facilitate permeation of the divalent form of Pi, 
AMP, and ATP along the VDAC pore. Below are represented successive MD conformations (in 
green and purple) showing these positively charged side chains undergoing a sweeping motion 
assisting the translocation of Pi along the pore. Pi are shown as balls and sticks and the basic resi-
dues as thick sticks. CYT and IS stand for the cytosolic and the intermembrane side, respectively 
(Reprinted with permission from PLoS ONE Krammer et al. (2015))
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profile of the studied compounds, the probability of interaction with the binding site 
decreases according to the sequence ATP4−>HPO4

2−>AMP2−>H2PO4
−.

As regard to the mechanism of permeation through plant VDAC, conserved fea-
tures have been noticed (Krammer et al. 2015). Namely, the N-terminal helical seg-
ment and the cluster of positively charged amino acid residues forming the binding 
site, K12, R15, and K20 are conserved in PcVDAC. When the effect of ATP and 
AMP on the PcVDAC conductance is considered, it is observed that the decrease in 
conductance is higher in the presence of ATP because of its long dwelling time 
inside the pore, which restricts the diffusion of inorganic monatomic ions. At high 
NaCl concentration (1 M), change in the conductance is weaker than at 0.1 M NaCl 
because the electrostatic screening of the charges inside the pore shallows the free 
energy profile for ATP and AMP, that decreases their probability of interaction with 
the binding site and thereof reduces dwelling time inside the VDAC pore.

7.3  VDAC Involvement in Oxidative Stress and Regulated 
Cell Death

7.3.1  The Role of Mitochondria in Oxidative Stress

In eukaryotic cells, oxidative stress can be defined as a process resulting from an 
imbalance between the production of reactive oxygen species (ROS) and capacity 
of cellular antioxidant defenses. The defense mechanisms include upregulation of 
various endogenous molecules, such as glutathione, ROS catalytic removal by 
enzymes like superoxide dismutase, catalase, and peroxidase, and repair of ROS- 
modified molecules (Barber et al. 2006; Radak et al. 2011; Mailloux et al. 2013). 
Among ROS, there are the free radicals of oxygen (e.g., singlet oxygen (1O2), super-
oxide anion (O2

•−), and hydroxyl radical (•OH)), which are atoms or molecules with 
an unpaired electron that can be rapidly donated making them highly reactive 
molecular species. Hydrogen peroxide (H2O2) is not a free radical, but it belongs to 
ROS, and it is capable of producing oxidative stress. The main site of ROS produc-
tion in cells are mitochondria (e.g., Ott et al. 2007; Murphy 2009) and chloroplasts 
in photosynthetic tissues (Woodson and Chory 2008; Van Aken and Van Breusegem 
2015). The details of ROS production in chloroplasts are beyond the scope of the 
chapter as VDAC is highly abundant in mitochondria. In mitochondria, they are 
mainly generated at Complex I and III of the respiratory chain as a result of respira-
tory chain reactions. The one-electron reduction of molecular oxygen produces a 
relatively stable intermediate, i.e., O2

•−, which serves as the precursor of most ROS 
but the detail mechanism of their generation is beyond the scope of the review (for 
review, see, e.g., Murphy 2009).

O2
•− produced by mitochondria Complex I is released into the mitochondrial 

matrix whereas O2
•− produced by Complex III appears on both sides of the inner 

membrane. As summarized by Ott et al. (2007), within the mitochondrial matrix, 
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MnSOD (manganese containing superoxide dismutase) converts O2
•− to H2O2, 

which can be further metabolized by glutathione peroxidase 1 (Gpx1) and peroxire-
doxin III (PrxIII), or diffuse from the mitochondria into the cytosol. O2

•− located in 
the intermembrane space can be released into the cytosol and/or converted into 
H2O2 by CuZnSOD (copper and zinc containing superoxide dismutase). Accordingly, 
mitochondria contribute 20–30% of the cytosolic steady-state concentration of 
H2O2 (Han et al. 2003). The conversion of O2

•− into H2O2 proceeds also in the cyto-
sol due to the presence of cytosolic CuZnSOD, and the H2O2 may be then decom-
posed to water and oxygen by catalase located mainly in peroxisomes (Del Río et al. 
2008). Importantly, about 1% of ROS escapes elimination (Ott et al. 2007). Likewise 
excessive O2

•− generation by the mitochondrial respiratory chain and consequently 
other ROS production can lead to oxidation of macromolecules including DNA, 
proteins, and membrane lipids that may influence cell viability and trigger cell 
death1 (e.g., Shoshan-Barmatz et al. 2015). Moreover, it is proposed that the steady- 
state concentration of O2

•− in the mitochondrial matrix is about five- to tenfold 
higher than that in the cytosol or nucleus making mitochondria a possible primary 
target for the damaging effects of ROS (Ott et al. 2007). This denotes that mitochon-
dria may generate and/or propagate oxidative stress. However, the mechanisms of 
O2

•− transport via the outer membrane of mitochondria and the control of this pro-
cess are still not clear.

7.3.2  VDAC and the Regulated Cell Death

In mammals, the O2
•− release from rat heart mitochondria is inhibited by known 

VDAC inhibitor (Han et al. 2003). It has been also reported that closure of VDAC1 
may impede the efflux of O2

•− from the intermembrane space to the cytosol that 
results in internal oxidative stress and promotion of mitochondrial membrane per-
meability changes related to regulated cell death (Tikunov et al. 2010). In addition, 
silencing of VDAC1 expression results in inhibition of oxidative stress-induced 
regulated cell death whereas overexpression of the protein enhances the regulated 
cell death in mammalian cells (e.g., Liu et al. 2006; Simamura et al. 2006; Tomasello 
et al. 2009; Chen et al. 2014).

In yeasts, it has been shown that isogenic wild-type and Δpor1 S. cerevisiae 
mitochondria depleted of YVDAC1 differ distinctly in the level of O2

•− release 
(Budzińska et al. 2009). The expression level of CuZnSOD and MnSOD proteins is 
influenced by the absence of either YVDAC isoforms, and both YVDAC1 and 
YVDAC2 are required for the homeostasis of the mitochondrial redox state 
(Galganska et al. 2010).

There are strong evidences indicating that regulated cell death occurs in plants 
and it is coupled to the mtROS production (Rhoads et al. 2006; Love et al. 2008; 

1 Within the chapter, we will follow the proposition of the Nomenclature Committee on Cell Death 
(Galluzzi et al. 2015).
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Zancani et al. 2015; Van Aken and Van Breusegem 2015; Huang et al. 2016). The 
synthesis of mtROS occurs during respiratory activity of plant cells. Under normal 
conditions, mtROS detoxification by dismutation and redox reactions prevents their 
deleterious effects on proteins, lipids, and DNA molecules. In addition, the electron 
transport chain of plant mitochondria contains an alternative oxidase (AOX) that 
catalyzes the oxidation of ubiquinol and reduces oxygen to water, which minimizes 
the formation of mtROS (Møller 2001; Vanlerberghe 2013). There is a growing 
body of evidence pointing at enhanced mtROS production and consecutive redox 
signaling during the plant response to biotic and abiotic stresses (Love et al. 2008; 
Van Aken and Van Breusegem 2015).

When mtROS formation exceeds the normal ROS level despite the existence of 
an endogenous protective capacity, it may induced mitochondrial retrograde regula-
tion as well as regulated cell death (Garcia-Brugger et al. 2006; Rhoads et al. 2006; 
Woodson and Chory 2008; Huang et al. 2016). It has been suggested that VDAC is 
involved in plant stress responses through its involvement in regulated cell death 
(Vianello et al. 2012; Takahashi and Tateda 2013). Several experimental data sup-
port this hypothesis. Either the overexpression of the rice OsVDAC4 or the human 
HVDAC1 in mammalian cell lines (Yurkat T-cell) induces apoptosis (Godbole et al. 
2003). This indicates that OsVDAC4 can substitute for HVDAC1to trigger PCD in 
mammalian cells. Regulated cell death was also induced by the overexpression of 
OsVDAC4 in tobacco BY2 cells and leaves (Godbole et al. 2013) or after the over-
expression of Pennisetum glaucum VDAC in rice (Desai et al. 2006). In addition, 
regulated cell death induced by biotic or abiotic stress is correlated to an upregula-
tion of VDAC transcript and protein level (Lacomme and Roby 1999; Kawai- 
Yamada et al. 2001; Al Bitar et al. 2003; Swidzinski et al. 2004; Desai et al. 2006; 
Tateda et  al. 2009; Kusano et  al. 2009). The mammalian anti-apoptotic factors 
Bcl-xL and its functional homologue Ced-9 in Caenorhabditis are known to sup-
press regulated cell death in non-plant cells. Though there is no homologue protein 
to the BCL-2 family in plant genome, the heterologous expression of Bcl-2, Bcl-xL, 
and Ced-9 cDNA in tobacco plants under the control of a strong promoter inhibits 
plant regulated death induced by different abiotic stresses or by the non-virulent 
pathogen tobacco mosaic virus (Mitsuhara et al. 1999; Qiao et al. 2002). The over-
expression of mammalian Bax gene in tobacco plants causes regulated cell death 
(Lacomme and Santa Cruz 1999; Tateda et al. 2009) in agreement with the pro- 
apoptotic function of Bax proteins.

Altogether, these data highlight the involvement of plant VDAC in the regulated 
cell death.

7.3.3  VDAC-Protein Interaction

The function of a protein is often regulated through interaction with other proteins. 
The occurrence of protein-protein interactions is ubiquitous and is essential for 
proper functioning of cells. Cytosolic and mitochondrial proteins have been found 
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to interact directly with the mammalian VDAC1 to mediate signaling between 
 cytosol and mitochondria (Rostovtseva and Bezrukov 2008, 2012; Shoshan-Barmatz 
et al. 2015). Here, we will focus on hexokinase and thioredoxin, which have been 
studied in plants.

7.3.4  VDAC-Hexokinase Interaction

Interaction of mammalian VDAC1 with hexokinase (HK) isoforms is important for 
cell protection against oxidative stress and consecutive cell death (e.g., Shoshan- 
Barmatz et al. 2015). It has been observed for HEK cells that HK I and HK II bind-
ing to VDAC1 decreases ROS release from mitochondria (Sun et  al. 2008). HK 
interaction with VDAC1 affects its channel properties, but the question of whether 
the binding to VDAC leads to its closure or to its opening is still not answered 
although the available data allow for suggestion that binding of HK II to VDAC1 
protects it from closing (Robey and Hay 2006; Sun et al. 2008) whereas binding of 
HK I induces it closure (Azoulay-Zohar et al. 2004). Such alteration of the channel 
conductance may have detrimental effect for cell because it has been shown that 
excessive VDAC closure induces mitochondrial swelling and regulated cell death in 
mammalian cells (Majewski et al. 2004; Rostovtseva et al. 2005).

Plant hexokinases, named HXKs, are the only enzymes that can phosphorylate 
glucose2 (Granot 2007). The HXKs that interact with mitochondria harbor an 
N-terminal putative membrane anchor sequence and are classified in “type B HXK” 
(HXK1) (Granot et al. 2014). Hexokinase1 (HXK1) has a dual function: it catalyzes 
glucose phosphorylation and acts as a glucose sensor (Jang and Sheen 1994; Granot 
et al. 2014).

In plants, hexokinase has been shown to play a role in pathogen-induced and 
H2O2-induced cell death (Kim et al. 2006; Camacho-Pereira et  al. 2009; Kusano 
et al. 2009). Kim’s seminal work (Kim et al. 2006) has shown that Nicotiana ben-
thamiana HXK1was associated with the mitochondria. Using virus-induced gene 
silencing, they have shown that the downregulation of HXK1 activated regulated 
cell death whereas the overexpression of the mitochondria-associated Arabidopsis 
hexokinases, HXK1 and HXK2, enhanced the resistance to regulated cell death of 
cells subjected to (experiencing undergoing) an oxidative stress. In addition, HXK1 
prevented the H2O2-induced cytochrome c release if it harbors its N-terminal mem-
brane anchor.

Another study has shown that transiently expressed OsVDAC4 and NtKxK3 
Nicotiana benthamiana hexokinase into tobacco BY2 cells are localize to mito-
chondria. The co-expression of the two proteins in plant leaves were more effi-
cient to prevent the induction of regulated cell death than NtKxK3 alone (Godbole 
et  al. 2013). Finally, a detergent-solubilized membrane proteins from beetroot 

2 The affinity for glucose is one to three orders of magnitude higher than that of other sugars.
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 mitochondria was shown to contain a complex HXK-VDAC suggesting that 
VDAC and HXK might interact in the MOM (Alcántar-Aguirre et al. 2013).

These results indicate that mitochondrial-associated hexokinase plays a role in 
the regulated cell death and suggest that the interaction between HK and VDAC 
might be the functional unit.

These data support the conclusion that plant VDAC has a role in the regulated 
cell death through its interaction with soluble proteins. It has long been thought that 
VDAC was a constituent of a protein complex named the permeability transition 
pore (PTP) that increases the permeability of MIM to solutes. However, the exis-
tence of the PTP is now questioned because the permeability transition occurs in the 
absence of the major components of the PTP. For instance, the peripheral benzodi-
azepine receptor (TSPO), the adenosine nucleotide translocase (ANT), and the 
VDAC are dispensable for the permeability transition (Kokoszka et  al. 2004; 
Krauskopf et al. 2006; Baines et al. 2007; Šileikytė et al. 2014; Gutiérrez-Aguilar 
et al. 2014). Recent data point to the role of the F-ATP synthase dimer in the forma-
tion of the PTP in MIM (Zancani et al. 2015).

7.3.5  VDAC-Thioredoxin Interaction

Thioredoxins are regulatory disulfide proteins that mediate the cellular redox 
homeostasis allowing disulfide bridge reduction of the target protein. Trx are 
recruited by Trx-dependent peroxidases (Prxs) to scavenge hydrogen peroxide. In 
addition, through the control of the redox state of proteins, they may also regulate 
the ROS signaling (Sevilla et al. 2015).

Four VDAC isoforms have been characterized in Arabidopsis (Yan et al. 2009; 
Tateda et al. 2011; Bauwe et al. 2012; Robert et al. 2012; Tateda et al. 2012; Li et al. 
2013). Recently, Zhang et al. (2015) have performed a yeast two-hybrid screen to 
identify the interaction between the Arabidopsis thaliana VDAC isoform 3 
(AtVDAC3) and the chloroplast protein thioredoxin m2 (AtTrx m2) in the regula-
tion of the ROS signaling occurring in response to abiotic stress. This interaction is 
specific for AtVDAC3 since AtVDAC1, AtVDAC2, and AtVDAC4 failed to interact 
with AtTrx m2  in the Y2H assay. The co-expression of AtTrx m2-GFPN and 
AtVDAC3-GFPC in BY2 tobacco cells localize the two proteins in the mitochon-
dria. The localization of AtTrx m2 at the mitochondrial is not surprising since it has 
been shown that it is targeted to the cytosol when interacting with cytosolic proteins 
(Meyer et al. 2011; Hölscher et al. 2014).

The authors present evidence that AtVDAC3 and AtTrx m2 participate to the 
regulated cell death. They have shown that hat AtVDAC3 and AtTrx m2 genes were 
upregulated when wild-type Arabidopsis plants were treated with H2O2, mannitol, 
or NaCl.

Zhang et al. (2015) have also analyzed transgenic Arabidopsis plants that over-
express either AtVDAC3OE or AtTrx m2OE. Both wildtype and transgenic plants 
were treated with either NaCl (salt stress) or H2O2. Interestingly, AtVDAC3OE and 
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AtTrx m2OE transgenic lines displayed opposite effects in the presence of the  abiotic 
stress. In regards to the wildtype, the seedling growth was lower and the ROS pro-
duction was enhanced in AtVDAC3OE cell line whereas the seedling growth was 
higher and the ROS production reduced in AtTrx m2OE cell line. Altogether, these 
data suggest that AtVDAC3 and AtTrx m2 might be involved in the regulated cell 
death. How their interaction might affect the regulated cell death deserves further 
investigations.

7.4  Conclusion

Despite early evolutionary divergence of VDAC proteins and their weak amino acid 
sequence similarity between different organisms, both the experimental and theo-
retical data indicate at conservation of the permeation process. The deciphering of 
the mechanisms underlying inorganic ion and metabolite permeation through VDAC 
is important, as the most of the chemical species entering or leaving mitochondria 
are anions significant for energy transformation. The change in VDAC permeability 
may be imposed by oxidative stress. It has been observed for plant cells that oxida-
tive stress may result in VDAC interaction with other proteins such as cytosolic 
hexokinase and thioredoxin although the way of their binding to plant VDAC and 
their impact on its functional properties remain to be elucidated. This in turn should 
allow for explanation of VDAC contribution to plant cell regulated death.
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Chapter 8
Lipids in Regulation of the Mitochondrial 
Outer Membrane Permeability, Bioenergetics, 
and Metabolism

Tatiana K. Rostovtseva, David P. Hoogerheide, Amandine Rovini, 
and Sergey M. Bezrukov

8.1  Introduction

Mitochondrial functions extend far beyond energy production in the form of 
ATP. Mitochondria play a crucial role in Ca2+ homeostasis, in steroid biosynthesis, 
and in programmed cell death and as a source of the endogenous toxic reactive oxy-
gen species (ROS) in the cell. The involvement of mitochondrial membranes in all 
these processes is well recognized, especially with regard to lipid synthesis and 
trafficking or communication with other organelles. The two mitochondrial mem-
branes, the mitochondrial inner membrane (MIM) and the mitochondrial outer 
membrane (MOM), play rather different roles in mitochondrial function, which are 
intimately related to their different lipid compositions. The MIM’s signature is a 
high cardiolipin (CL) content (up to 20%), while the MOM has high cholesterol 
content (up to 10%) (de Kroon et al. 1997; Flis and Daum 2013). The MIM’s promi-
nent roles in oxidative phosphorylation, energy production, Ca2+ signaling, and 
mitochondrial metabolism are well established. By contrast, the role of the MOM 
was previously thought to be the simple confinement of proteins and metabolites in 
the crowded intermembrane space. This viewpoint changed drastically in the mid- 
1990s with the discovery of the MOM permeabilization (MOMP) process at the 
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early stage of apoptosis. Since then, the role of the MOM as a platform for apoptosis 
execution by Bcl-2 family proteins has been well documented (e.g., see Chipuk 
et al. 2006). The involvement of MOM lipids in formation and promotion of supra-
molecular openings induced by the pro-apoptotic proteins Bax, Bak, Bid, and others 
has been demonstrated (Basanez et al. 2002; Kuwana et al. 2002; Terrones et al. 
2004; Yethon et al. 2003), leading to the proposal that together with the MOM lip-
ids, the pro-apoptotic Bax/Bak oligomeric complex is directly involved in the for-
mation of the so-called lipidic pores in the MOM (Landeta et al. 2011; Schafer et al. 
2009; Terrones et al. 2004). Furthermore, lipid ceramide was itself shown to form 
large, cytochrome c-permeable pores in the MOM and thus be sufficient to induce 
MOMP and promote apoptosis (Colombini 2010; Siskind et al. 2002). The unique 
MIM phospholipid CL is associated with all of the major players in oxidative phos-
phorylation. Due to its characteristic nonlamellar shape, with four poly-unsaturated 
acyl chains, CL also plays a pivotal role in maintaining the curvature of the highly 
bent cristae. In addition to its structural and protein-lipid interaction functions in the 
MIM, CL is essential for anchoring pro-apoptotic tBid and thus promoting MOMP 
(Gonzalvez et al. 2005; Shamas-Din et al. 2015). The formation of the apoptotic 
“activation platform” composed of CL, caspase-8, and full-length Bid at the mito-
chondrial contact sites has been suggested (Gonzalvez et al. 2008), directly con-
necting mitochondrial lipids with Barth syndrome, a chromosome X-linked 
cardioskeletal myopathy and neutropenia that is often fatal in infancy and early 
childhood due to heart failure and bacterial infections (Schlame and Ren 2006). 
This is just one of numerous cases in which mitochondrial lipids are involved in 
human diseases.

The few examples mentioned above represent the conventional understanding of 
the functional and structural roles of the MOM lipids in the mitochondrial apoptotic 
pathway. In the current review, we discuss a different, complementary view of the 
MOM as a platform for cytosolic proteins to regulate MOM permeability by their 
direct functional interaction with the voltage-dependent anion channel (VDAC). We 
focus particularly on the role of the mitochondrial lipids in this regulation.

8.2  VDAC Voltage-Gating and Regulation of ATP Flux

As the major channel and most abundant protein in the MOM, VDAC is responsible 
for most of the metabolite flux in and out of mitochondria. VDAC was shown to be 
involved in a wide variety of mitochondria-associated pathologies, from various 
forms of cancer to neurodegeneration (Shoshan-Barmatz et al. 2010). It is therefore 
not surprising that VDAC has emerged as a promising pharmacological target 
(Shoshan-Barmatz and Ben-Hail 2012). The uniqueness of this large, passive, 
weakly selective β-barrel channel arises mainly from its location at the interface 
between the mitochondria and the cytosol (Colombini 2004), where it serves as a 
pathway for all mitochondrial water-soluble respiratory substrates, such as ATP, 
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ADP, and small ions (Colombini et al. 1996; DeHart et al. 2014; Rostovtseva et al. 
2005). By contrast, there is a large variety of highly specified carriers and exchang-
ers to translocate these substrates across the MIM. The weak anionic selectivity of 
the VDAC pore favors transport of negatively charged mitochondrial metabolites 
(Colombini et al. 1996). It is generally believed that VDAC regulates metabolite 
fluxes using its conserved ability to “gate” or adopt different conducting and, cru-
cially, ion-selective states (Colombini 2004; Hodge and Colombini 1997; Lemasters 
and Holmuhamedov 2006; Lemasters et  al. 2012; Rostovtseva and Colombini 
1996). However, it is not yet known with certainty whether VDAC gating occurs 
in vivo, since all electrophysiological data on VDAC function have thus far been 
obtained using an in vitro system of VDAC reconstituted into planar lipid bilayers, 
where gating is induced by the applied voltage (Colombini 1989).

One major dilemma is that the very existence of a significant potential across 
MOM in vivo is uncertain. Conventional thinking holds that this potential is essen-
tially zero due to the high abundance of VDAC in the MOM (e.g., see discussions in 
Colombini 2004; Lemeshko 2006; Rostovtseva and Bezrukov 2012 and Chap. 9 of 
the current volume). In this view, the main source of the potential across the MOM 
is the so-called Donnan potential, which arises from the large difference in the con-
centrations of VDAC-impermeable charged macromolecules (e.g., the 12-kDa cyto-
chrome c protein, which carries nine positive charges) in the mitochondrial 
intermembrane space and in the cytosol (Colombini 2004). The few available esti-
mates of the MOM transmembrane potential range from 10 mV (Lemeshko 2006) 
to as high as 46 mV (Porcelli et al. 2005) and even higher (Lemeshko 2014a, b, 
2016). Recent work suggests that other biochemical processes can enhance the 
Donnan potential considerably. Lemeshko (2014a, b, 2016 and Chap. 9 of the cur-
rent volume) proposes that VDAC complexes with hexokinases at the cytosolic side 
and/or with mitochondrial creatine kinase in the intermembrane space could play 
the role of “batteries,” generating a potential across the MOM as high as 50 mV. In 
this picture, the Gibbs free energy of kinase reactions is the driving force. 
Importantly, the cytoplasmic side of the MOM is negative relative to the potential of 
the intermembrane space. Regardless of the source and magnitude of the MOM 
potential in  vivo, it has been experimentally demonstrated using reconstituted 
VDAC that ATP passes readily through the open, weakly anion-selective VDAC 
state, but essentially does not pass through its low-conducting, weakly cation- 
selective states induced by the applied potential in the voltage-clamp mode 
(Rostovtseva and Colombini 1996, 1997). Furthermore, using current noise analysis 
on a single VDAC channel in the presence of relatively high molecular weight nega-
tively charged metabolites, it was found that VDAC could discriminate between 
different adenine mono- and dinucleotides and also between similarly charged mol-
ecules, such as ATP and UTP (Rostovtseva et al. 2002a, b). These findings suggest 
that VDAC has been evolutionary selected to regulate fluxes of metabolites by 
dynamically adapting the electrostatic environment of its pore in favor of adenine 
nucleotides (Noskov et al. 2016). It is then natural to expect the existence of endog-
enous cytosolic (and perhaps mitochondrial also) proteins that are able to efficiently 
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regulate VDAC permeability for the major mitochondrial metabolites, especially 
ATP and ADP.

It was only a matter of time before such endogenous VDAC regulators were 
found. Two apparently unrelated cytosolic proteins, dimeric tubulin and α-synuclein 
(α-syn), were discovered to reversibly block reconstituted VDAC with nanomolar 
(nmol/l) efficiency and thereby control the fluxes of ATP, ADP, and other metabo-
lites through VDAC (Rostovtseva et al. 2008, 2015). Notably, while both α-syn and 
tubulin are abundant cytosolic proteins with other functions (well known for tubu-
lin, but not as clear for α-syn, as discussed below), they appear to double as 
membrane- associated proteins, displaying high affinity to mitochondrial mem-
branes. In this second role, they are potent regulators of VDAC.

8.3  VDAC Regulation by Tubulin and α-Synuclein

Tubulin is an abundant cytosolic protein known primarily for its role as the building 
block of microtubules. It is a heterodimer with α- and β-subunits forming an acidic, 
water-soluble, compactly folded 110-kDa protein with a well-defined crystal struc-
ture (Nogales et al. 1998). Each subunit has an unstructured C-terminal tail (CTT) 
composed of 11–20 amino acids (Westermann and Weber 2003) exposed at the 
protein surface (Fig.  8.1a). Both α- and β-tubulin CTTs are highly negatively 

Fig. 8.1 Both VDAC blockers, the α/β-tubulin heterodimer and α-synuclein, possess extended 
disordered anionic C-terminal tails. Tubulin structure is adapted from (Nogales et al. 1998)
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charged and are essentially poly-Glu peptides. In microtubules, dimeric tubulin is 
assembled in such a way that the exposed, growing end of the microtubule is always 
the β-subunit. As a result, microtubule-targeting agents (MTAs) used in chemo-
therapy bind exclusively to the β-subunit (Field et  al. 2014). Until recently, any 
physiological role of unassembled, cytosol-solubilized dimeric tubulin, other than 
as a supply for polymerization into microtubules, remained unknown.

α-Syn, by contrast, is a small, 14-kDa, 140-amino acid, intrinsically disordered 
protein (Fig. 8.1b) highly expressed in the central nervous system and constituting 
up to 1% of total cytosolic protein in normal brain cells (Kruger et al. 2000). It is the 
major component of the Lewy bodies characteristically observed in the brains of 
Parkinson’s disease (PD) patients (Spillantini et al. 1997). Based on the observation 
that Lewy bodies consist primarily of fibrillary α-syn, most studies have focused on 
the pathological role of α-syn aggregates. However, the precise role of α-syn in 
normal brain cells and in α-synucleinopathies, particularly in its monomeric form, 
remains largely mysterious.

What do these two genetically, structurally, and physiologically unrelated pro-
teins have in common? In this review, we discuss the following similarities: both 
proteins (1) possess a disordered highly negative charged C-terminus; (2) induce 
characteristic rapid reversible blockages of VDAC reconstituted into planar lipid 
membranes with nanomolar efficiency; (3) are “amphitropic” proteins, i.e., water- 
soluble proteins that are reversibly associated with cellular membranes under cer-
tain physiological conditions; (4) specifically bind to mitochondrial membranes in 
live cells; and (5) modulate mitochondrial metabolism and respiration by regulating 
VDAC permeability in a lipid-dependent manner.

8.3.1  Regulation of VDAC Permeability by Dimeric Tubulin 
and Monomeric α-Synuclein

In these experiments, a single VDAC channel spans a planar bilayer lipid membrane 
that separates and electrically isolates two buffer-filled compartments (Rostovtseva 
and Bezrukov 2015). The ionic current through the VDAC channel is generated by 
an applied transmembrane potential and is monitored for changes induced by the 
addition of dimeric tubulin or α-syn. Single-channel recordings of VDAC reconsti-
tuted into planar lipid bilayers yield strikingly similar blockage events induced by 
addition of dimeric tubulin and α-syn to the membrane-bathing buffer solution at 
nanomolar concentrations (Fig. 8.2a, b). Two representative experiments in which 
50 nM tubulin or α-syn added to one side of the membrane induce fast time-resolved 
transitions (insets at a finer time scale) between VDAC’s high-conductance open 
state and low-conductance blocked state are presented in Fig. 8.2a, b. Without these 
inhibitors, the VDAC conductance at low applied potentials (<30 mV) is very stable 
and essentially lacks transitions to the low-conductance state (left traces in Fig. 8.2a, b). 
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The channel can maintain the open state for up to a few hours at low potentials 
under the experimental conditions represented by Fig. 8.2a, b. The conductance of 
the open state in the presence of either inhibitor remains the same as in the control, 
and the conductance of the blocked state is ~0.4 of the open-state conductance. This 
is in striking contrast to the typical VDAC voltage-induced gating, which is charac-
terized by long (10–100 s) closures to multiple low-conductance (“closed”) states 
(Fig. 8.2c).

Fig. 8.2 Dimeric tubulin (a) and α-synuclein (b) induce fast, reversible, partial blockages of 
VDAC reconstituted into planar lipid bilayers, with kinetics that are dramatically different from 
those of VDAC closure induced by applied voltage (voltage gating) (c). (a, b) Representative cur-
rent records of single VDAC channels before and after addition of 50 nM tubulin (a) or α-syn (b) 
to one side of the membrane at −25 mV applied voltage (potential is more negative at the side of 
tubulin or α-syn addition). The channel conductance fluctuates between the high-conducting, 
“open,” and low-conducting, “blocked”, state with well time-resolved blockage events shown in 
insets at the finer time scales. Long-dashed lines indicate the zero-current level, and short-dashed 
lines show the open and blocked states. (c) Typical VDAC voltage-induced gating under −50 mV 
applied voltage. Under the applied potential, the channel conductance moves from a single open 
state (dash-dot-dot lines) to various low-conducting or “closed” states (dotted lines). The medium 
was 1 M KCl buffered with 5 mM HEPES at pH 7.4. VDAC was isolated from mitochondria of N. 
crassa (a, c) or rat liver (b)
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Both tubulin and α-syn induce VDAC blockage in a concentration-dependent 
manner. The number of blockage events increases with the blocker protein’s bulk 
concentration (Rostovtseva et al. 2012, 2015). The concentration dependence of the 
blockage on-rate is described by a simple ligand-binding equation with Kd in the 
10–50 nM range for both inhibitors, depending on the experimental conditions such 
as the membrane lipid composition or pH. At low (<50 nM) tubulin or α-syn con-
centrations, the rates of interaction with VDAC can, to a first approximation, be 
described by a first-order reaction, where the rate of blockage events (the “on-rate”) 
linearly increases with blocker concentration, while the characteristic duration of 
the blockages (the inverse “off-rate”) is concentration independent.

8.3.2  A General Model of VDAC Blockage, Requiring 
a Channel Inhibitor to Have an Anionic Disordered 
Domain and Lipid-Binding Domain

Figure 8.1 illustrates that the existence of a highly negatively charged unstructured 
CTT is a common feature of tubulin and α-syn. Both tubulin and α-syn block VDAC 
measurably only when a negative potential is applied from the side of protein addi-
tion (Rostovtseva and Bezrukov 2015; Rostovtseva et al. 2015). When the sign of 
the potential is reversed, no blockage events are observed, and the channel open- 
state conductance is as steady as in a control experiment without protein addition 
(see Fig. 1.5 in (Rostovtseva and Bezrukov 2015). This observation, and the fact 
that tubulin with proteolytically cleaved CTTs does not induce characteristic VDAC 
blockages even at micromolar concentrations (Rostovtseva et al. 2008), suggest that 
the negatively charged CTTs are responsible for the channel blockage by tubulin. 
On the other hand, synthetic peptides of α- and β-tubulin CTTs do not measurably 
block the channel, up to 10 μM concentration (Rostovtseva et al. 2008). Experiments 
with a peptide consisting of the 45 C-terminal amino acids of α-syn likewise did not 
reveal interaction with VDAC (Rostovtseva et al. 2015). Altogether, these observa-
tions suggest that while the disordered acidic C-terminal peptide of either tubulin or 
α-syn is required for VDAC blockage, it should be attached to an “anchor” that 
holds it at the channel entrance (Fig. 8.3), preventing free translocation through the 
pore, which is expected to occur at time scales too fast to be experimentally 
observed. Tubulin’s bulky body is about twice as large as the VDAC pore entrance 
and cannot translocate; in the case of α-syn, its membrane-binding domain is 
responsible for this anchoring function. In both cases, the increased applied nega-
tive voltage keeps the anionic CTT inside the positively charged pore longer 
(Fig. 8.4c, d). Indeed, experiments show that the dwell time of tubulin- and α-syn- 
induced blockages is highly voltage dependent and increases exponentially with the 
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Fig. 8.3 Models of VDAC blockage by tubulin (a) and α-syn (b), in which the negatively charged 
C-terminal tails of tubulin or α-syn partially block the channel by entering the net positive VDAC 
pore in its open state under negative applied potentials. (a) Hypothetical structural models of 
dimeric tubulin binding to the membrane. (a) For tubulin bound by the α-subunit, both CTTs of the 
α- and β-subunits can reach the VDAC pore, while the vinblastine-binding site remains exposed. 
(b) For tubulin bound to the membrane by the β-subunit, only the β-subunit CTT is able to block 
the channel, while the vinblastine-binding site is inaccessible. Intermediate binding configura-
tions, including the case where both subunits are responsible for membrane binding, are also pos-
sible and would in general present both CTTs to the VDAC pore (not shown). (b) Structural model 
of membrane-bound α-syn with its α-helical N-terminal domain bound to the membrane and the 
acidic disordered CTT blocking the VDAC pore. The VDAC β-barrel (3D model of mouse VDAC1 
is adapted from Ujwal et al. (2008)) is shown embedded into lipid bilayer)
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applied voltage (Fig. 8.4c) (Rostovtseva et al. 2012). The steep voltage dependence 
of the open probability yields the effective gating charge of 10–13 elementary 
charges depending on the salt concentration of the membrane-bathing buffer 
(Gurnev et al. 2012). Such a high gating charge is characteristic of the most sensi-
tive voltage-gated channels of neurophysiology to date (Swartz 2008).

Additional evidence that the tubulin CTT partitions into the VDAC pore was 
obtained in experiments designed to probe the tubulin-blocked state using different 
approaches (Gurnev et  al. 2011) in combination with molecular dynamics (MD) 
simulations (Noskov et al. 2013). It was shown that the small-ion selectivity switches 
from anionic to cationic when the channel moves from the open state to the 
 tubulin- blocked state (Gurnev et  al. 2011). These results indicate that the highly 
negatively charged tubulin CTT, by entering a net positive pore, reverses the net 
charge of the pore interior. By measuring nonelectrolyte polymer partitioning into 
the ion channel, it was found that the dimensions of the blocked pore are signifi-
cantly smaller than those of the open state (Gurnev et al. 2011). MD simulations of 
the α-tubulin- VDAC1 complex demonstrate that in the presence of the unstructured 
CTT of α-tubulin in the VDAC1 pore, the pore conductance decreases by about 60% 
and switches its selectivity from anion- to cation-preferring channels (Noskov et al. 
2013), thus confirming electrophysiological data obtained on reconstituted 
VDAC. The negatively charged C-terminus of the bound α-tubulin molecule is com-
plemented by the VDAC pore providing matching basic residues that form stable 
salt bridges involving Arg15, Lys20, Lys12, and Lys32 of VDAC (Noskov et  al. 
2013). Finally, and most importantly, channel experiments and MD simulations 
demonstrate that ATP is excluded from the tubulin-blocked state (Gurnev et  al. 
2011; Noskov et al. 2013). Altogether, these results provide strong evidence that 
tubulin is a potent regulator of VDAC, which could efficiently modulate fluxes 
of  nucleotides through the channel and thus control mitochondria respiration. 
Experiments with isolated mitochondria (Monge et  al. 2008; Rostovtseva et  al. 
2008) and human hepatoma HepG2 cells (Maldonado et al. 2011, 2013) confirm 
that the VDAC-tubulin interaction is functionally important for regulating mito-
chondrial respiration.

For intrinsically disordered α-syn, where the whole molecule can, in principle, 
translocate through the channel because a single polypeptide strand fits comfortably 
into the ~2.5 to 2.7 nm diameter VDAC pore, the relationship between dwell times 
and applied voltages becomes more complex than for tubulin. In contrast to the 
tubulin-induced blockages, the dwell time of α-syn-induced blockages exhibits a 
biphasic dependence on the applied potential (Rostovtseva et al. 2015) (Fig. 8.4d). 
At voltages lower than a certain value, the so-called turnover potential, (indicated as 
V* in Fig. 8.4e) dwell time increases with voltage in a manner characteristic for the 
blockage regime (Hoogerheide et al. 2016). At voltages higher than the turnover 
potential, the dwell time decreases with voltage, signifying a predominance of 
translocation (Fig. 8.4e). Based on these data, a model of α-syn interaction with 
VDAC was proposed, where the anionic C-terminus partially blocks the positively 
charged VDAC pore and the membrane-bound N-terminus holds it at the membrane 
surface preventing complete translocation through the channel at voltages smaller 
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Fig. 8.4 VDAC blockages by tubulin or α-syn are highly voltage dependent. (a, b) Log-binned 
distribution of the time of blockage events induced by tubulin (a) or α-syn (b) obtained from sta-
tistical analysis of current records such as those shown in Fig. 8.2a, b. Distributions of the times 
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than 30 mV (Fig. 8.4e) (Rostovtseva et al. 2015). Therefore, under certain condi-
tions, such as the applied potential, lipid composition, and ionic strength of buffer 
solution, α-syn can either block VDAC in qualitatively similar manner to tubulin or 
translocate through the channel (Fig.  8.4e). The latter process, if confirmed by 
future experiments in live cells, implies that VDAC serves as a pathway for α-syn 
into the mitochondrial space, where it could directly target electron transport chain 
complexes of the inner membrane as in vivo experiments suggest (Devi et al. 2008; 
Elkon et al. 2002; Ellis et al. 2005; Liu et al. 2009; Luth et al. 2014) as well as other 
intermembrane space proteins.

Importantly, the proposed model of VDAC inhibition (Fig. 8.3) is quite general 
and does not require any specific interaction between the VDAC pore and inhibitor. 
This model explains satisfactorily how two such different proteins as tubulin and 
α-syn induce qualitatively similar blockages of VDAC and suggests that other cyto-
solic proteins may also be involved. Generalizing based on these two examples, the 
architecture of a VDAC inhibitor should fulfil two main requirements: have a nega-
tively charged disordered C- or N-terminus and a membrane-binding domain. Then, 
it is natural to expect that the membrane lipid composition is an important factor in 
interaction of both tubulin and α-syn with reconstituted VDAC.

8.4  Tubulin and α-Synuclein Interactions with VDAC 
Strongly Depend on Membrane Lipid Composition

8.4.1  Effect of Membrane Lipid Composition on VDAC- 
Tubulin Interaction

The characteristic on-rate constant, kon, of VDAC-tubulin binding depends on both 
the hydrophobic and polar parts of the phospholipid (Fig. 8.5a–c). The effect of 
lipid charge is observed primarily at the physiologically low salt concentrations: 
addition of the negatively charged diphytanoyl-phosphatidylserine (DPhPS) to the 
neutral diphytanoyl-phosphatidylcholine (DPhPC) (PS:PC = 4:1) resulted in ~200 

Fig. 8.4 (continued) spent by the channel in the tubulin-blocked state, τb, require at least two 
exponents for fitting, with characteristic times τ(1)

off and τ(2)
off shown by the solid line (a). The dis-

tribution of blockage events induced by α-syn, on the other hand, is satisfactorily described by 
single exponential fitting (solid line) (b). Applied voltages were −25 mV (a) and −35 mV (b). (c) 
Both characteristic tubulin- induced blockage times exponentially depend on the applied voltage 
and do not depend on the membrane lipid composition (indicated in the graph). (d) Voltage depen-
dence of the blockage time induced by α-syn has a biphasic character. (e) The turnover potential V* 
separates the blocking regime, where the absolute applied potential |V| ≤ V*, from the translocation 
regime, where |V| ≥ V*. At relatively low voltages, when the CTT (red) is captured in the pore, 
increasing the electrical field keeps it inside the pore longer, while the membrane-bound N-terminal 
domain (green) prevents translocation of the molecule. This results in reversible capture of the 
CTT and an exponential increase in the characteristic blockage time τoff. Voltages higher than V* 
detach the N-terminal domain from the membrane surface and allow the whole molecule to trans-
locate through the channel, resulting in a decrease of τoff (Adapted from Rostovtseva et al. (2015))
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times decrease of kon in 0.1 M KCl (Fig. 8.5a) (Rostovtseva et al. 2012), which may 
suggest that the acidic regions of the tubulin globule may be sufficiently close to the 
negatively charged membrane surface to be electrostatically repelled. At a high salt 
concentration of 1.5 or 1 M KCl, the presence of DPhPS does not affect the on-rate 
(Fig. 8.5a). Salt concentration affects the on-rate of the blockage in both neutral and 
charged membranes: in 0.1 M KCl, the kon was ~5 times higher than in 1.5 M KCl 
for the neutral DPhPC membranes but ~50 times lower than in 1.5 M KCl in the 
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negatively charged DPhPC/DPhPS membranes (Fig. 8.5a). The type of lipid hydro-
carbon acyl chains also significantly affects the blockage kinetics: when oleoyl 
chains in DOPC have been replaced with phytanoyl in DPhPC, the on-rate of tubu-
lin blockage increased ~70 times (Fig. 8.5b). Surprisingly, the on-rates appeared to 
be consistently different when planar bilayers were formed from the same lipid 
composition but using different organic solvents, such as hexadecane or petroleum 
jelly (Rostovtseva et al. 2012). A comparison of the kon values obtained in DPhPC 
membranes, formed after pretreatment of the orifice across which a planar mem-
brane is made from two opposing lipid monolayers (Rostovtseva and Bezrukov 
2015), with hexadecane (Fig. 8.5a) (see details in Bezrukov and Vodyanoy 1993) or 
petroleum jelly (Fig. 8.5b) (see details in Schein et al. 1976) is shown in Fig. 8.5a, 
b. These data indicate that tubulin-VDAC interaction is sensitive to the hydrophobic 
core of planar lipid bilayer, thus pointing out to a presence of the non-electrostatic 
component in this interaction. Additional evidence of the involvement of a hydro-
phobic component in tubulin-VDAC binding is that kon increases gradually with the 
DOPE content of DOPC membranes and is ~200 times higher in a pure DOPE 
membrane than in a pure DOPC membrane (Fig. 8.5c) (Rostovtseva et al. 2012). 
These observations point to tubulin binding to the membrane as an important 
requirement for VDAC blockage, in which the on-rate depends on the surface con-
centration of tubulin.

The natural lipid composition of the rat liver MOM is a mixture of ~44 and 35% 
of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively, with 
~20% of charged lipids consisting primarily of ~14% CL and ~5% of 
 phosphatidylinositol (PI) (de Kroon et  al. 1997) with cholesterol (~10% of total 
MOM lipid). The soybean polar lipid extract (PLE) closely resembles rat liver 
MOM lipid composition and therefore has been tested in tubulin-VDAC experi-
ments (Rostovtseva et al. 2012). In PLE membranes, tubulin blocked VDAC even 
less effectively than in DOPC (Fig. 8.5b), perhaps due to the presence of ~25% of 
the negatively charged PI and PA lipids in the mixture. Addition of 10% of choles-
terol to the PLE mixture did not affect the on-rate constant significantly (Fig. 8.5b). 
CL also did not change VDAC-tubulin binding when added to the DOPC mem-
branes in 1 M KCl (Fig. 8.5b).

For all studied lipid compositions, the off-rate of VDAC blockage by tubulin was 
not affected (Fig. 8.4c) (Rostovtseva et al. 2012). This is consistent with the picture 
of VDAC-tubulin binding as a first-order reaction in which the on-rate is concentra-
tion dependent and the off-rate is not. In this view, the on-rate depends on the effec-
tive concentration of tubulin close to the channel entrance and thus on tubulin 
binding to the membrane surface, which in turn depends on membrane lipid compo-
sition (see Sect. 8.5.2 below). The role of lipid composition, particularly charged 
headgroups, on the concentration-independent off-rate of capture of the tubulin 
CTT into the VDAC pore has not yet been determined. When the tubulin CTT enters 
the VDAC pore, the strength of the binding, in terms of its residence time in the 
pore, does not depend on the lipid composition. Thus, at a constant applied voltage 
the equilibrium of VDAC-tubulin binding is predominantly defined by the on-rate. 
Consistent with the proposed lipid-dependent step of VDAC blockage by tubulin, 
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we can suggest that any modifications of tubulin association with mitochondrial 
membrane induced by substantial lipid homeostasis in mitochondria in vivo would 
result in the different on-rates of VDAC-tubulin binding and consequently in differ-
ent VDAC permeability to ATP or ADP.

8.4.2  Effect of Membrane Lipid Composition on VDAC-α-syn 
Interaction

When α-syn blocks VDAC (Fig. 8.2b), the lipid membrane composition affects the 
on-rates of VDAC blockage in a manner qualitatively similar to what was shown for 
tubulin. Using a lipid mixture mimicking the MOM lipid composition, it was found 
that the on-rate of α-syn-induced VDAC blockage is higher in non-lamellar DOPE 
than in lamellar DOPC (Jacobs et al. 2016). In particular, the on-rate increases up to 
tenfold with the increase of PE content in PC membranes. Remarkably, the off-rate 
at high transmembrane potentials was also lipid dependent, as seen by a 5 mV 
increase in the “turnover potential” which separates regimes of blockage and trans-
location with the increase of PE content (Jacobs et al. 2016). This lipid sensitivity 
supports a model shown in Fig. 8.3b in which the binding of α-syn’s N-terminal 
domain to the membrane is followed by C-terminal blockage of the VDAC pore 
governed by transmembrane potential (Rostovtseva et al. 2015). Thus, similar to 
tubulin blockage of VDAC, the lipid dependence of α-syn-VDAC binding can be 
primarily attributed to the lipid sensitivity of α-syn molecule binding to the mem-
brane, a phenomenon that has been demonstrated by various in vitro biophysical 
experiments (see Sect. 8.5.1 below).

At physiologically low salt concentrations of 150 mM KCl, the on-rates increase 
more than tenfold compared to experiments performed in high salt of 1 M KCl, 
while translocation of α-syn through VDAC is impeded (Jacobs et al. 2016). The 
effect of ionic strength on the on-rate of VDAC blockages observed in neutral mem-
branes made of DOPE/DOPC mixture suggests that both electrostatic and hydro-
phobic components of α-syn-membrane association are involved in α-syn-VDAC 
binding, thus confirming the previously suggested participation of electrostatic 
forces in α-syn-membrane binding (Davidson et al. 1998).

It must be noted that despite the striking phenomenological similarity between 
VDAC blockages by α-syn and tubulin, there are a number of significant quantita-
tive and qualitative differences between the two. For instance, the presence of PE 
has ~10 times higher effect on the on-rate of tubulin-VDAC binding than on α-syn- 
induced blockage; the characteristic time of blockage by α-syn is at least ten times 
smaller than the shortest one for tubulin, τ(1)

off (compare Fig. 8.4c with Fig. 8.4d); 
anionic lipids significantly increase the on-rate of VDAC blockage by α-syn in low 
and high salts but not by tubulin (Fig.8.5a, b).

Overall, these findings provide an example of lipid-controlled protein-protein 
interactions where the choice of lipid species is able to change the equilibrium bind-
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ing constant by orders of magnitude. They also suggest a new regulatory role of both 
charged and neutral mitochondrial lipids in the control of MOM permeability, and 
hence mitochondria respiration, by modulating VDAC sensitivity to blockage by 
tubulin and α-syn. Considering the substantial lipid homeostasis in mitochondria 
during morphological changes such as fusion and fission (Furt and Moreau 2009), 
under apoptotic stress (Crimi and Esposti 2011), or lipid oxidation by ROS produced 
by mitochondria (Kagan et al. 2004; Pamplona 2008; Paradies et al. 2011), lipids 
could be potent regulators of VDAC and therefore of MOM permeability in vivo.

8.5  Membrane-Binding Properties of α-Synuclein 
and Tubulin

8.5.1  α-Synuclein-Membrane Binding

There are three distinctive regions of α-syn: the slightly net positively charged 
N-terminal domain (residues 1–60), the central nonpolar “nonamyloid-β compo-
nent” (NAC) domain (residues 61–95), and the highly acidic C-terminal domain 
containing 15 negative charges (residues 96–140) (Rochet et al. 2012) (Fig. 8.1b). 
In solution, α-syn exists in the disordered form but can adopt an α-helical structure 
in its N-terminal domain upon binding to lipid membranes. The structure of mem-
brane-bound α-syn is the subject of intense investigation and has been comprehen-
sively reviewed (Pfefferkorn et al. 2012b). One of the primary techniques used to 
study adsorption of α-syn onto membrane surfaces has been circular dichroism 
(CD). CD reveals that α-syn, while disordered in bulk media, adopts a secondary 
structure with different helical content upon association with different lipid mem-
branes (Davidson et al. 1998). In particular, anionic lipids stabilize an amphipathic 
helical structure in bound α-syn (Jiang et al. 2015). CD also shows an increase in 
helicity for non-lamellar zwitterionic lipids such as PE (Jo et al. 2000).

Complementary techniques find that there is measurable association between 
α-syn and membranes composed of lipids that do not induce helices. Specifically, 
fluorescence correlation spectroscopy (FCS) uses fluorescently labeled α-syn to 
determine the fractions of unbound α-syn, which diffuses freely in bulk solution, and 
liposome-bound α-syn, which has a diffusion constant similar to the liposomes to 
which it is bound (Rhoades et al. 2006). By this technique, it has been determined that 
α-syn does in fact associate with PC lipids, and there is a strong variation in binding 
to different anionic lipid species (Middleton and Rhoades 2010; Rhoades et al. 2006).

These results suggest a complex correlation between the secondary structure 
adopted by membrane-bound α-syn and the measured binding affinity. In particular, 
lipids with small and/or negatively charged headgroups enhance both binding affin-
ity and helix formation; these enhancements are highest for phosphatidic acid (PA) 
headgroups and weakest for PC. Neutron reflectometry, which reports on membrane 
structure, protein penetration depth, and protein extension outside the membrane, is 
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a promising technique for examining the structure of α-syn and the membranes to 
which it binds. Studies on anionic lipids have demonstrated that α-syn resides in the 
membrane headgroup region without significant penetration into the hydrophobic 
core of the membrane (Jiang et al. 2015; Pfefferkorn et al. 2012a).

α-Syn has also been demonstrated to show strong curvature sensitivity (Middleton 
and Rhoades 2010) and in fact appears to have a strong effect on the morphology of 
membrane surfaces to which it binds (Braun et al. 2014; Jiang et al. 2013; Shi et al. 
2015). This is not surprising given α-syn’s affinity for binding nonlamellar lipids in 
planar bilayers; indeed, the two phenomena are difficult to separate conceptually 
(Cornell 2015). In highly curved micelles, α-syn forms a broken helix (Ulmer et al. 
2005); on small unilamellar vesicles, it is thought that the helix can be either broken 
or continuous (Lokappa and Ulmer 2011). Intriguingly, in membranes with lipid 
compositions mimicking real systems, a multiplicity of membrane conformations 
was confirmed in nuclear magnetic resonance (NMR) and computational studies 
(Bodner et al. 2009; Fusco et al. 2014). Together, these observations suggest that the 
degree of helix formation depends strongly on the lipid composition and other fac-
tors in vivo and may be a mechanism to fine-tune α-syn-lipid-binding affinities.

The propensity of α-syn to target anionic lipids with headgroups that are small 
relative to the fatty acid chains and as a result to demonstrate strong curvature sen-
sitivity has significant in vivo implications. The mitochondrial outer membrane of 
Saccharomyces cerevisiae is composed of 45% PC lipids; the rest are all small 
 headgroup (PE at 33%, CL at 6%, PA at 4%) and/or charged lipids (CL, PA, phos-
phoinositol (PI) at 10%, phosphatidylserine (PS) at 1%) (Zinser et  al. 1991). In 
addition, the mitochondrial network is highly dynamic; the fusion/fission processes 
necessarily create regions of high curvature in MOM that may additionally enhance 
(or be enhanced by) α-syn binding. In the absence of significant inhibition by pro-
teinaceous membrane components, α-syn can be expected to have substantial inter-
actions with the membranes of mitochondrial composition and topology.

8.5.2  Tubulin-Membrane Association

Tubulin has been known to bind to liposomes and membrane extracts for several 
decades. These early results have been exhaustively compiled and reviewed (Wolff 
2009). Unlike α-syn, however, few definitive statements can be made about the 
structure of membrane-bound tubulin. CD experiments suggest that both the helical 
character and the hydrophobic environment of membrane-bound tubulin increase 
relative to solubilized protein (Kumar et al. 1981). While these results have been 
interpreted as suggesting tubulin to be integrated into the hydrophobic region of the 
membrane, they are intriguingly similar to observations for α-syn and may simply 
indicate the formation of additional secondary structure upon association with the 
membrane. Other features of tubulin-membrane association, particularly its revers-
ibility (Caron and Berlin 1980) and well-defined binding constant (Bernier-Valentin 
et al. 1983), support the notion of a peripheral attachment.
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The lipid specificity of tubulin binding is not well studied. PE lipids appear to 
increase microtubule assembly (Hargreaves and McLean 1988), possibly due to a 
tubulin concentrating effect at surfaces containing PE lipids. This is supported by 
fluorescence studies showing an increase in tubulin binding to PE-containing large 
unilamellar vesicles (Rostovtseva et al. 2012). The effect of anionic lipids on micro-
tubule assembly appears to have more to do with microtubule associated proteins 
than with tubulin itself (Wolff 2009).

Despite the known crystal structure of dimeric tubulin (Nettles et  al. 2004; 
Nogales et al. 1998), the binding mechanism of the tubulin dimer to the membrane 
surface remains unknown, including the fundamental question of whether the α- or 
β-subunit (or both) is proximal to the membrane (Fig. 8.3a). The most indicative 
clue is the unchanged β-tubulin/vinblastine-binding affinity between membrane- 
bound and solubilized tubulin (Bhattacharyya and Wolff 1975), suggesting that the 
vinblastine-binding site remains exposed in membrane-bound tubulin (Fig. 8.3a, a).

The identification of the membrane-binding surface of tubulin is of critical 
importance for two reasons. First, MTAs overwhelmingly bind to the β-subunit 
(Field et al. 2014). If the β-subunit is responsible for membrane binding (Fig. 8.3a, 
b), one might expect that β-tubulin-bound MTAs would interfere with tubulin- 
membrane binding (see below discussion in 8.6.1). If, on the other hand, the 
α-subunit binds to membranes (Fig. 8.3a, a), new opportunities arise for drug devel-
opment targeting the membrane-binding surface of tubulin. Second, the detailed 
mechanism of tubulin’s interaction with VDAC depends on the structure and orien-
tation of membrane-bound tubulin on the membrane surface. The relatively short 
α-tubulin CTT (11 amino acids, ≈4.4 nm long) is attached near one end of the dimer 
(Fig. 8.1b) and would be unable to reach the membrane surface and be captured into 
the VDAC pore for a variety of surface configurations, including nearly all in which 
β-tubulin is bound (Fig. 8.3a, b). Conversely, the longer β-tubulin CTT (17 amino 
acids, ≈6.8 nm long), which is attached near the dimer interface (Fig. 8.1b), is likely 
to be surface accessible for all reasonable binding configurations, including binding 
via α-tubulin (Fig. 8.3a, a). Binding configurations for which both subunits simul-
taneously interact with the membrane are also possible. One would expect both 
CTTs to be accessible to the VDAC pore in this case.

The multiple dwell times of the CTTs in the channel (Rostovtseva et al. 2008) 
(Fig. 8.4a) argue for a distribution of either CTT isotypes (see discussion in part 
8.6.1 below) or of the orientation of surface-bound tubulin dimer (Fig. 8.3a). The 
simplest explanation is that both the α- and β-CTTs are captured into the channel; 
however, the wide variety of mammalian CTT isotypes and post-translational modi-
fications which predominantly occur in the CTT (Westermann and Weber 2003), 
such as polyglutamation (Sirajuddin et al. 2014), as well as the multiplicity of sub-
units and isoforms of each subunit, may as well be responsible.

The disambiguation of the role of the two tubulin subunits in binding to mito-
chondrial membranes would be an important step forward in understanding the 
physiology of the tubulin-mitochondrial interaction and regulation of VDAC in 
particular. The recent development of systems producing recombinant tubulin 
(Minoura et al. 2013; Sirajuddin et al. 2014; Vemu et al. 2016) is likely to stimulate 
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research in this direction. Biophysical studies of the lipid composition dependence 
of tubulin binding to mitochondrial membranes, such as those described for α-syn, 
would be particularly useful. The large, elongated structure of the tubulin dimer 
makes it particularly suitable for in  vitro structural techniques such as neutron 
reflectometry (Heinrich and Losche 2014).

To summarize, the membrane-binding properties of tubulin and α-syn have a 
number of similar features. Both are strongly sensitive to lipid-packing defects 
caused by the presence of nonlamellar lipids in planar bilayers (PE vs PC). The 
helical content of both proteins increases with binding, with α-syn’s amphipathic 
helical binding domains stabilized by anionic lipids. These properties are well 
suited for targeting the MOM and enhancing the availability of these molecules for 
voltage- induced interaction with VDAC.  In addition, if tubulin is shown to bind 
peripherally, they appear to form a new and interesting class of peripheral mem-
brane proteins that target lipid-packing defects and/or curvature without (as best we 
know) being directly involved in lipid-trafficking pathways (Cornell 2015). It 
remains to be seen if this is a general property of peripheral membrane proteins 
associated with the MOM.

8.6  Physiological Relevance of Tubulin and α-Synuclein 
Interaction with Mitochondrial Membranes

8.6.1  Tubulin Association with Mitochondrial Membranes

The year 2017 marks the 50th anniversary of the discovery of tubulin, yet some topics 
related to this protein remain underappreciated. One such topic is the nature of tubu-
lin association with cell membranes. As pointed out in Sect. 8.5.2, the presence of 
tubulin in membranes isolated from various types of cells and tissues has been known 
since the 1970s (Bhattacharyya and Wolff 1975; Feit and Barondes 1970) followed a 
few years later by the demonstration of tubulin’s association with mitochondrial 
membranes (Bernier-Valentin et al. 1983). A clear co-localization of β-tubulin with 
MOM has been shown by (Saetersdal et al. 1990). Since then, only a few studies have 
been dedicated to establish the nature of this “mitochondrial” tubulin.

Tubulin is found to be associated with mitochondrial membranes from a wide 
range of cancerous and noncancerous human cell lines, namely, neuroblastoma 
(SK-N-SH and IMR32), lung carcinoma (A549), breast adenocarcinoma (MCF-7), 
nasal septum adenocarcinoma (RPMI 2650), cervix carcinoma (HeLa), ovarian 
carcinoma (A2780 and OVCAR-3, Cicchillitti et al. 2008), and noncancerous breast 
cells (HBL-100) (Carre et al. 2002). β-Tubulin was also found associated with mito-
chondria from rat cardiomyocytes (Guzun et  al. 2011). While the amount of 
mitochondria- associated tubulin appears to differ between cell lines from which 
mitochondria were isolated, Carre et al. estimated that it represents ~2% of total 
cellular tubulin. Interestingly, in this study α- and β-tubulins were present at com-
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parable levels in mitochondria, suggesting that mitochondrial tubulin is a heterodi-
mer. Noteworthy differences were found between cytosolic and mitochondrial 
tubulins: mitochondria contain more tyrosinated and acetylated α-tubulin and also 
more βIII isotype compared to cytosolic tubulin. In rat cardiomyocytes, βII-tubulin 
was associated with mitochondria, while βIII-tubulin was colocalized with sarco-
meric Z-lines and βIV with polymerized microtubules (Guzun et  al. 2011). 
Interestingly, Cicchillitti et al. (2008) analyzed the migration pattern of βIII-tubulin 
from ovarian cancer cells on two-dimensional gels and observed that βIII isotype 
exists under two distinct isoforms that differ in their isoelectric point (pI). While 
one βIII isoform was detectable only in the mitochondrial compartment, the other 
βIII isoform was present in both cytoskeletal and mitochondrial preparations. 
Further characterization of βIII isoforms by separation of polymerized and free 
tubulin fractions allowed finding the “mitochondrial” isoform in the pool of free 
tubulin, while the “cytoskeletal” isoform was found mainly associated with the pel-
let containing assembled tubulin. Altogether these data suggest that tubulin associ-
ated with mitochondria is a dimer consisting of α-tubulin and one of the β-tubulin 
isotypes, depending on cellular tissue. Whether there is βIII isotype specificity for 
mitochondria has yet to be proven.

The fact that tubulin and VDAC could be co-immunoprecipitated (Carre et al. 
2002) is of particular relevance for the in vitro findings described in previous sec-
tions. Tubulin interaction with mitochondrial membranes and VDAC is a promis-
ing direction for chemotherapy and, more specifically, for understanding MTA’s 
mechanism of action. MTAs like vinorelbine and paclitaxel have been shown to 
have a direct effect on mitochondria isolated from human neuroblastoma. They 
notably induce cytochrome c release, PTP opening, and mitochondria swelling 
(Andre et  al. 2000). Mitochondria-associated tubulin has been proposed to be 
responsible for the mitochondrial dysfunctions induced by both stabilizing and 
destabilizing MTAs. Yet, the exact underlying mechanisms remain to be elucidated, 
requiring a clear depiction of how MTAs bind to dimeric mitochondrial tubulin and 
whether this binding modifies tubulin dimer conformation, as suggested by in vitro 
experiments (Arnal and Wade 1995), and consequently affects tubulin-membrane 
association (Fig. 8.3a). Another related question to explore is the impact of MTA-
tubulin binding on tubulin interaction with VDAC. This would bring a better under-
standing of MTA direct targets in cancer cells and also in neuronal cells, since 
MTA treatment is associated with the development of peripheral neuropathies 
(Ballatore et al. 2012).

Mitochondrial membrane composition and its maintenance are essential for nor-
mal mitochondrial function, structure, and biogenesis. Thus, changes in the phos-
pholipid composition affect mitochondrial functions and dynamics and have been 
linked to a variety of human diseases such as Barth syndrome (Schlame and Ren 
2006), heart failure (Sparagna et al. 2007), neurodegenerative diseases (Aufschnaiter 
et al. 2016), and, more recently, cancer (Ribas et al. 2016). While lipid metabolism 
in apoptosis and cancer together with lipid replacement therapies are emerging 
fields (Huang and Freter 2015; Monteiro et al. 2013; Nicolson and Ash 2014), the 
way mitochondrial tubulin could be affected by MOM lipid content changes is still 
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an open avenue to be explored. Nowadays, profiling of mitochondrial lipids in path-
ological conditions is made possible through “lipidomics” studies. This term, coined 
in the early 2000s (Wilson 2003), relates to novel mass spectrometry analytical 
approaches to quantitatively define lipid compositions from many different sources. 
Search for reliable procedures to standardize mitochondria isolation and minimize 
contaminations by membranes from other organelles is now a point of focus 
(Kappler et al. 2016). A future perspective is to discern whether tubulin binding to 
mitochondria is affected by MTA treatment in cancer and neuronal cells. 

Potentially, the key factor in modulating tubulin binding to mitochondrial mem-
branes is the increased generation of ROS, a common feature in aging and cancer 
(Brieger et al. 2012; Minelli et al. 2009). Mitochondria are the source and also the 
first target of oxidative products. Oxidation of mitochondrial phospholipids and 
associated proteins triggers structural changes in lipid bilayer organization and con-
sequently alters membrane fluidity and permeability, leading inevitably to mito-
chondrial dysfunction (Paradies et al. 2014).

Future research will show if lipid peroxidation affects tubulin binding to mito-
chondria. So far, it is known that products of lipid peroxidation and especially 
4-hydroxy-2-nonenal (HNE) disrupt the soluble/polymer tubulin equilibrium in 
favor of free tubulin (Kokubo et al. 2008; Neely et al. 1999; Olivero et al. 1990). 
Chemotherapy treatments, including taxanes and vinca alkaloids to a lesser extent, 
generate oxidative stress and lipid peroxidation products (Conklin 2004; Panis et al. 
2012). Cellular data confirmed a mitochondrial origin of ROS after MTAs treatment 
(Le Grand et al. 2014) as well as an increased level of lipid peroxidation in an ani-
mal model of the chemotherapy-induced peripheral neuropathy (Greeshma et  al. 
2015). βIII-tubulin lacks the highly oxidizable Cys-239 found in βI, βII, and βIV 
isotypes (Joe et  al. 2008), thus making βIII more resistant to free radicals. This 
could be one of the plausible explanations why mitochondria are enriched for this 
specific isotype. βIII-tubulin is of high interest in the cancer research field since this 
isotype has been associated with tumor development and aggressiveness and also in 
resistance to chemotherapy in tumors with poor prognosis (Mariani et  al. 2015; 
Seve and Dumontet 2010). In this context, it would be beneficial to investigate if 
MTA-induced lipid peroxidation could regulate VDAC-tubulin interaction and thus 
participate in affecting physiopathological conditions.

8.6.2  α-Synuclein Association with Mitochondrial Membranes

Since the identification of dominant mutations in the SNCA gene, α-syn became the 
subject of numerous investigations. It has been reported that α-syn localizes at both 
the MOM and MIM from diverse models of dopaminergic neurons (Cole et  al. 
2008; Devi et al. 2008; Li et al. 2007; Parihar et al. 2008; Shavali et al. 2008) and 
that accumulation of α-syn in mitochondria impairs complex I resulting in increased 
oxidative stress (Devi et  al. 2008; Parihar et  al. 2008; Pennington et  al. 2010). 
However, other group showed the absence of the inhibition effect on complex I by 
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α-syn accumulated in mitochondria isolated from mouse brain (Banerjee et  al. 
2010). While most of the studies agree on the inhibitory effect of α-syn on the oxi-
dative phosphorylation capacity and on the promotion of oxidative stress, the exact 
mechanism(s) of α-syn effect on the mitochondrial bioenergetics remains largely 
unknown. There is still no consensus about the molecular identity of the pathway 
for α-syn to cross the MOM. A few studies suggested the translocase of the outer 
membrane complex 40 (TOM40) as the α-syn pathway (Bender et al. 2013; Devi 
et  al. 2008). However, it seems very unlikely that acidic protein without a 
mitochondria- specific precursor would translocate through the highly substrate- 
specific and cation-selective Tom40 pore (Kuszak et  al. 2015). On the contrary, 
VDAC would nicely account for the translocation pathway of α-syn into the mito-
chondria and its access to complex I and probably to other electron transport com-
plexes (Fig.  8.6). Toxicity associated with such interaction has been shown in a 
yeast PD model (Rostovtseva et al. 2015) and is currently under investigation in a 
neuronal cell model.

α-Syn’s connection to mitochondrial lipid homeostasis in cells was proposed in 
a study showing that a decreased level of mitochondrial PE found in yeast and worm 
models of PD was correlated with accumulation of α-syn into cytoplasmic foci 

Fig. 8.6 Proposed physiological implications of α-syn blockage and translocation through 
VDAC.  By reversibly blocking the VDAC pore, α-syn temporarily disrupts ATP/ADP fluxes 
between mitochondria and the cytosol and thus regulates them. By translocating through VDAC, 
α-syn reaches complexes of the electron transport chain (cI, cII, cIII, and cIV) in the MIM and 
impairs their function. This leads to the loss of mitochondrial potential ΔΨ and enhanced ROS 
production. ROS induces mitochondrial lipid peroxidation, which may modulate α-syn binding to 
the MOM as well as monomeric α-syn oxidation, leading to amplification of toxic fibrillary α-syn 
(Fα-syn) in the cytosol (Reprinted with permission from Rostovtseva et al. (2015))
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(Wang and Witt 2014). An earlier study showed a decreased level of the total PE and 
PC content in brains from PD patients (Riekkinen et al. 1975). These results are 
consistent with the in vitro data and model of α-syn-VDAC interaction discussed 
above in Sect. 8.4.2. The role of CL in α-syn-induced mitochondrial dysfunctions is 
now quite well documented (Ghio et al. 2016). In mouse models, the lack of α-syn 
was associated with decrease in CL (Ellis et al. 2005). Remarkably, both interac-
tions between CL and α-syn and changes in CL content have been reported to have 
deleterious effects on mitochondria. In addition, the direct association of α-syn and 
CL has been correlated with disruption of mitochondrial dynamics in favor of frag-
mentation (Bueler 2009). On the other hand, altered CL content and expression 
levels of α-syn have generated seemingly contradictory results. Some data report 
that overexpression of the N-terminal domain of α-syn in neuronal models of PD is 
correlated with a decline in mitochondrial CL content, alterations in mitochondrial 
morphology, bioenergetics deficits, and decrease in mitochondrial membrane poten-
tial (Shen et  al. 2014), while another study reported that α-syn knockout mice 
showed a decrease in mitochondrial CL and CL precursors and consequently reduc-
tion of complex I/III activity (Ellis et al. 2005). The number of similarities between 
the effects produced by the decrease of CL content and changes of α-syn expression 
levels points to an intricate relationship between α-syn and CL that requires further 
investigation.

There is strong evidence that oxidative stress is associated with PD pathology 
(Borza 2014) (Dias et al. 2013) as well as with numerous other pathologies. Several 
cellular models showed that oligomeric but not monomeric α-syn significantly 
increases the rate of ROS production, subsequently inducing lipid peroxidation in 
both primary co-cultures of neurons and astrocytes. Since inhibition of lipid peroxi-
dation protects cells from cell death induced by oligomeric α-syn, the authors con-
cluded that lipid peroxidation induced by misfolding of α-syn may play an important 
role in the cellular mechanism of neuronal cell loss observed in PD (Angelova et al. 
2015). But so far, details about the specific phospholipid species undergoing oxida-
tion and leading to mitochondrial dysfunction in PD are lacking. Given the high 
vulnerability of CL to peroxidation and the overall role of CL oxidation products in 
apoptosis and metabolic signaling (Kagan et al. 2014), CL is a promising candidate 
for further investigation in a PD context. Recently, Tyurina and coauthors (Tyurina 
et al. 2015) used a rat model of PD and lipidomics approach to identify oxygenated 
molecular species of CL formed in dysfunctional mitochondria. This particular 
study showed an increase in oxidized CL; therefore, a crucial point that remains 
unanswered is to what extent α-syn still binds to a modified CL. More in vitro data 
are needed to unravel the connections between α-syn and lipid peroxidation prod-
ucts in regard to α-syn conformational states and their relative binding to mitochon-
drial membranes.

The cartoon presented in Fig. 8.6 (Rostovtseva et al. 2015) illustrates how the 
previously discussed array of data on ROS production, mitochondrial dysfunction, 
lipid peroxidation, α-syn oxidation and fibrillation, and α-syn expression level can 
be reconciled within a model of MOM permeability regulation by α-syn interaction 
with VDAC and translocation through VDAC.  By crossing the MOM through 
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VDAC, α-syn is able to directly target complexes of the electron transport chain in 
the MIM, which could lead to the loss of the mitochondrial potential, enhanced 
ROS production, and mitochondrial lipid peroxidation followed by mitochondrial 
dysfunction. ROS in turn could oxidize monomeric α-syn in the cytosol (and most 
likely mitochondrial bound α-syn), causing α-syn oligomerization (Hashimoto et al. 
1999) and consequently amplification of α-syn toxicity. ROS-induced mitochon-
drial lipid peroxidation could change monomeric α-syn binding to mitochondria 
(Ruiperez et  al. 2010) and thus affect the α-syn-induced mitochondrial toxicity 
cycle. Depending on physiological conditions in the cell, such as α-syn expression 
level (Devi et al. 2008), cytosolic pH (Cole et al. 2008), MOM lipid composition 
(especially its CL and PE content Ellis et  al. 2005), and potential across MOM, 
α-syn could regulate a normal ATP/ADP exchange through VDAC or cause mito-
chondrial dysfunction. In general, the model in Fig. 8.6 illustrates how mitochon-
drial lipids could be intimately involved in regulation of MOM permeability and 
mitochondrial function by cytosolic proteins as long as these proteins have the char-
acteristics identified in Sect. 8.3.

8.7  Future Perspectives

We have attempted to show that the voltage-activated interaction between VDAC 
and charged cytosolic proteins is not specific in the traditional sense of ion channel 
regulation. Rather, the complexity of the dependences of the interaction rate on salt 
concentration, lipid composition, and protein concentration appears to arise entirely 
from the crucial involvement of peripheral binding of the cytosolic proteins to the 
lipid membrane. Thus, a complete characterization of this phenomenon requires a 
dissection of each step of interaction by applying a number of biophysical and bio-
chemical techniques that report on various aspects of peripheral protein binding. As 
we have shown here, the VDAC channel itself is a sensitive single-molecule probe 
of the membrane-bound tubulin and α-syn. The planar bilayer approach is also well 
suited for study of protein binding using the nonlinear electrical properties (e.g. 
“second harmonics” techniques) of lipid bilayers (Peterson et al. 2002; Sokolov and 
Kuzmin 1980). Due to the absence of intrinsic curvature, planar bilayers are com-
plementary to the liposome-based techniques (CD, FCS, gravimetric, electrokinetic 
mobility). Other useful platforms include solid supported (Castellana and Cremer 
2006) or tethered (He et al. 2005; Lang et al. 1994) bilayer lipid membrane systems. 
Though these membranes have the disadvantages of steric hindrances and mem-
brane stresses due to proximity to a planar substrate, they nonetheless feature unpar-
alleled stability and have led to significant advances using neutron reflectometry, 
surface plasmon resonance, and optical spectroscopy. We expect these experimental 
techniques to be especially informative when complemented by in silico platforms, 
including both atomistic and coarse-grained (e.g., MARTINI MD simulation 
Marrink et al. 2007; Monticelli et al. 2008) models for protein binding to MOM- 
mimicking membranes. Visualization of proteins interacting with VDAC in 
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biological samples through the use of a dual-color super-resolution microscopy of 
protein distribution in the MOM would provide a translation of in vitro data and 
models into a live-cell context. Another important element to assay in cells is the 
mitochondrial lipidomics and its modifications (remodeling, variation of content, 
oxidative forms) since lipid changes have been related to numerous pathological 
conditions and are even considered in some cases as biomarkers. Altogether, the 
combination of electrophysiology with an array of biophysical, biochemical, and 
computational methods is needed to reveal the role(s) of lipids in regulation of 
MOM permeability and, consequently, in mitochondrial function.
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Chapter 9
The Mitochondrial Outer Membrane Potential 
as an Electrical Feedback Control of Cell 
Energy Metabolism

Victor V. Lemeshko

9.1  Introduction

Mitochondria, intracellular structures composed of two membranes, represent the 
main source of energy in aerobic eukaryotic cells. The mitochondrial inner membrane 
(MIM) is responsible for the oxidative phosphorylation process coupled to respira-
tion, while the mitochondrial outer membrane (MOM) seems to control energy flux 
between mitochondria and the cytosol (Rostovtseva and Colombini 1997; Colombini 
2004; Lemeshko 2002, 2014a, 2016; Lemasters and Holmuhamedov 2006; Saks et al. 
2010; Colombini and Mannella 2012; Rostovtseva and Bezrukov 2008, 2012; Messina 
et al. 2012; Maldonado et al. 2013), cell energy homeostasis in general, and cell sur-
vival (Shoshan-Barmatz and Gincel 2003; Rostovtseva et al. 2008; Shoshan-Barmatz 
and Ben-Hail 2012; Maldonado et al. 2013; Lemeshko 2014a, 2016; Guzun et al. 
2015). The MOM permeabilization induced by various proapoptotic signals is known 
to liberate apoptogenic factors from the mitochondrial intermembrane space (MIMS) 
into the cytosol, hence starting the apoptotic cascade in mammalian cells, finally lead-
ing to cell death (Rostovtseva et al. 2005; Báthori et al. 2006; Shoshan-Barmatz et al. 
2010; Smilansky et  al. 2015). In general, a broad range of pathologies is directly 
related to various mitochondrial dysfunctions at the level of both membranes.

The voltage-dependent anion channel (VDAC), constituting more than 50% of 
the MOM total protein (Mannella 1982; Colombini and Mannella 2012), is highly 
permeable in its open state for negatively charged metabolites, including ATP, ADP, 
AMP, CrP, and inorganic phosphate (Pi), and it is almost impermeable in its closed 
state for most of them (Hodge and Colombini 1997; Vander Heiden et  al. 2000; 
Colombini 2016). This allows the assumption that the outer membrane potential 
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(OMP) of mitochondria, presumably generated under physiological conditions by 
various metabolically dependent mechanisms, suggested earlier (Lemeshko and 
Lemeshko 2004; Lemeshko 2002, 2006, 2014a, 2016), might be a powerful regula-
tor of MOM permeability and thus of the cell energy metabolism in general.

VDAC is characterized by well-conserved voltage-gating properties (Colombini 
and Mannella 2012) that may be additionally controlled by its phosphorylation- 
dephosphorylation (Pastorino et al. 2005; Sheldon et al. 2011; Kerner et al. 2012) 
and SH/SS redox state (Okazaki et al. 2015; De Pinto et al. 2016), various proteins 
(Liu and Colombini 1992; Colombini et al. 1996; Rostovtseva and Bezrukov 2012; 
Kuznetsov et  al. 2013; Rostovtseva et  al. 2015; Chernoivanenko et  al. 2015), 
metabolites, and other factors (Lee et al. 1996; Colombini et al. 1996; Lemasters 
and Holmuhamedov 2006; Báthori et  al. 2006; Stein and Colombini 2008; 
Shoshan- Barmatz et al. 2010; Maldonado et al. 2013; Sheldon et al. 2015). That is 
why VDAC has been considered a very important target for the development of 
new drugs, including anticancer medications (Shoshan-Barmatz and Ben-Hail 
2012; Mathupala and Pedersen 2010; Rimmerman et al. 2013; Head et al. 2015; 
Zhang et al. 2016).

Many cases of apparently anomalous behavior of mitochondria have been related 
to a possible MOM permeability restriction, such as global suppression of mito-
chondria under ischemia, anoxia, sepsis, and aerobic glycolysis in cancer cells, 
among others (Lemasters and Holmuhamedov 2006). According to these authors, a 
closure of VDAC, then a block of MOM permeability, could lead to a global sup-
pression of mitochondrial metabolism. Nevertheless, the possibility of electrical 
closure of VDACs by OMP under physiological conditions has been questioned, 
because even in its closed state VDAC is highly permeable to small ions such as 
potassium, sodium, and chloride (Hodge and Colombini 1997), assuming to prevent 
the possibility of OMP generation (Lemasters and Holmuhamedov 2006). With this 
respect, Benz et al. (1990) concluded earlier that “the existence of an electrochemi-
cal potential across the outer membrane can’t be expected.” However, zero electro-
chemical potential does not mean that the electrical membrane potential cannot 
exist. In the case of the Donnan potential, for example, generally understood as the 
electrical potential generated across porous membranes by membrane impermeable 
charged colloids, the electrochemical potentials of small permeable ions are equal 
to zero. Even in the case of a relatively high steady-state resting potential in the 
giant axon, generated by the well-known Na+/K+ mechanism, the electrochemical 
potential of highly permeable chloride ions across the excitable membrane is known 
to be almost zero.

OMP of the Donnan nature has been suggested to influence VDAC’s conduc-
tance under physiological conditions (Liu and Colombini 1992; Porcelli et al. 2005), 
but such a possibility has been questioned because the average charge of cytosolic 
proteins has to be different from that of MIMS proteins (Maldonado and Lemasters 
2014). On the other hand, a Donnan potential of even a small value might be super-
imposed on variable metabolically derived OMP, as described earlier (Lemeshko 
and Lemeshko 2000).
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A Donnan potential of high value across MOM has been assumed by Porcelli 
et  al. (2005) on the basis of experiments with living cells, first mentioned by 
Colombini (2004). In the experiments of Porcelli et al. (2005), the estimated OMP 
achieved up to −43 mV. The authors also demonstrated that rotenone and oligo-
mycin, mitochondrial inhibitors, caused the complete disappearance of the moni-
tored potential that seems to contradict the Donnan potential nature of 
OMP. Nevertheless, if we consider the mitochondrial matrix as one “giant macro-
molecule” with a very high and variable negative charge inside the energized 
mitochondria, it might be understood as a Donnan potential. Along these lines, it 
has been demonstrated that electrophoretic mobility of the energized mitochon-
dria is significantly higher than that of the de-energized mitochondria (Kamo et al. 
1976). This new aspect of a possible nature of OMP seems to be worthy of further 
theoretical consideration.

The origin of the potential monitored by Porcelli et al. (2005) is not yet clear, 
because the pH-sensitive fluorescent probe has been covalently attached to the 
glycerol- 3-phosphate dehydrogenase. This is an integral membrane protein on the 
external side of MIM, thus allowing the sensing of relatively high negative surface 
potential of MIM, depending on the mitochondrial metabolic state (see discussion 
by Lemeshko 2006). OMP, monitored by Porcelli et al. (2005), might also reflect, at 
least partially, metabolically derived OMP generated by some of the steady-state 
mechanisms suggested earlier (Lemeshko and Lemeshko 2000, 2004; Lemeshko 
2002, 2014a, 2016). The experimental approach undertaken by Porcelli et al. (2005) 
is promising for the monitoring of OMP in living cells in real time using a pH- 
sensitive fluorescent probe covalently attached to a MIMS protein, which does not 
have an affinity to MIM.

Metabolically dependent generation of OMP, although of relatively low value, 
might arise from the difference in the MOM permeability to charged metabolites. 
This has been demonstrated earlier using a theoretical model of a steady-state 
energy flux from mitochondria into the cytosol, maintained by cycling of creatine 
phosphate (CrP)/creatine (Cr) and Pi (Lemeshko and Lemeshko 2000). High values 
of OMP, positive and negative, were predicted by another model, where OMP gen-
eration is coupled to phosphoryl group transfer from the matrix ATP into the cytosol 
through the bi-transmembrane contact sites formed by the adenine nucleotide trans-
locator (ANT) and VDAC (Lemeshko 2002). In this model, inorganic phosphate 
returns into MIMS through VDACs not bound to other proteins in MOM (“free” 
VDACs). Such energy-supported cycling of one net negative charge allows the pre-
sentation of OMP as a part of IMP applied to MOM through the ANT-VDAC or 
ANT-VDAC-HK electrogenic contact sites (Lemeshko 2002). The possibility of 
induction of OMP by the inner membrane electrochemical gradient, at least at the 
intermembrane contact sites, to regulate the open-closed states of the VDACs, has 
been also assumed by Mathupala and Pedersen (2010).

A very powerful and, at the same time, the simplest active mechanism of OMP 
generation has been suggested recently on the basis of the thermodynamic analysis 
of the VDAC-kinase electrogenic complexes in MOM, which might be considered 
as generators of metabolically dependent OMP (Lemeshko 2002, 2014a, 2016). 
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According to the VDAC-HK model of OMP generation, the Warburg effect might 
be described as an electrical suppression of mitochondrial ATP transfer to the cyto-
sol (Lemeshko 2015). The exception, in this case, is the initial step of glycolysis 
associated with the VDAC-HK complexes of MOM (Lemeshko 2002, 2014a; 
Lemeshko and Lemeshko 2004). As it has been shown by Warburg, cancer cells 
display very high glycolysis, in which fully active mitochondria (not damaged) are 
relatively inactive in terms of respiration and ATP generation (see Lemeshko 2002; 
Lemasters and Holmuhamedov 2006).

Although various possibilities exist for generation of metabolically derived 
OMP, allowing a fast and wide range of VDAC conductance modulation by an elec-
trical feedback control mechanism, the most accepted concept might be described 
as a “molecular corking up” of open VDAC pores, based on many experimental 
observations (Colombini et  al. 1996; Lemasters and Holmuhamedov 2006; 
Rostovtseva et al. 2008, 2015; Rostovtseva and Bezrukov 2012; Maldonado et al. 
2013; Simson et al. 2016). Recently, it has been assumed, on the basis of a model 
that does not consider any possibility of the electrical closure of VDACs by OMP, 
that only 2% of mitochondrial VDACs in cardiomyocytes are open, resulting in up 
to 98% of VDACs being blocked by tubulin and/or wrapped by sarcoplasmic reticu-
lum (Simson et al. 2016). Alternatively, these observations support the possibility of 
OMP generation causing up to 98% electrical suppression of MOM permeability to 
ADP and to other charged metabolites.

It has been demonstrated that the cytosolic protein tubulin significantly decreases 
the conductance of VDAC reconstituted into planar lipid membrane (Rostovtseva 
and Bezrukov 2012, 2015; Maldonado et al. 2013). The most important finding is 
that VDAC blockage by tubulin is impressively voltage-dependent (Rostovtseva and 
Bezrukov 2015). Thus, if the metabolically dependent positive OMP (which corre-
sponds to the negative potential on the cytosolic side of the MOM) is generated by 
some mechanism, it will increase VDAC blockage by tubulin. Vice versa, VDAC 
blockage by tubulin and other proteins might increase the probability of OMP gen-
eration, as it has been demonstrated in previous theoretical works (Lemeshko 2014a, 
2016). In general, the fast electrical modulation of VDACs together with their 
“molecular corking up” might represent a very powerful synergistic signaling 
mechanism controlling cell energy metabolism.

In the presented work, we describe three types of possible steady-state mecha-
nisms of OMP generation coupled to phosphoryl group transfer through the mito-
chondrial membranes (Lemeshko 2002, 2014a, 2016). The performed simplest 
thermodynamic estimations of a possible range of generated OMP support the 
suggestion of a new metabolically dependent electrical signaling system associ-
ated with MOM, allowing physiological regulation of cell energy metabolism. In 
cancer cells, the metabolically dependent OMP might cause electrical suppres-
sion of mitochondria, underlying the Warburg and Crabtree effects. In addition, 
OMP-dependent expulsion/capture of Ca2+ from/into MIMS seems to also be fun-
damental in controlling mitochondrial permeability transition and cell death 
resistance.
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9.2  The Mitochondrial Outer Membrane Potential Arising 
from Steady-State Passive Diffusion of Charged 
Metabolites

There are various possibilities for generation of metabolically dependent OMP in 
cells that may be tissue specific, from the normal contractile and noncontractile 
cells to cancer cells. OMP at relatively low levels, not high enough to restrict MOM 
permeability by electrical closing of VDACs, may still modulate steady-state con-
centration levels of organic and inorganic ions in MIMS, such as ADP3− and Ca2+, 
for example, influencing their transportation into the mitochondrial matrix and thus 
modulating the mitochondrial metabolic state.

One type of the mechanisms of OMP generation may be based on the well- 
known difference in VDAC’s permeability to the most important anionic metabo-
lites, such as ATP, ADP, AMP, CrP, and Pi, in both open and closed states of the 
channel, at different steady-state electrochemical gradients of these metabolites 
across MOM (Fig. 9.1). The generation of negative OMP, resulting from the steady- 
state return of Pi into MIMS, after ATP hydrolysis in the cytosol, is expected due to 
a relatively high MOM permeability to Pi in comparison with that to ATP (Hodge 
and Colombini 1997; Vander Heiden et al. 2000; Colombini 2016). To recover ATP, 
Pi from MIMS is transported into the mitochondrial matrix through the electrically 
neutral pH-dependent Pi transporter (PT) located in MIM (Fig. 9.1a).

Fig. 9.1 Possible passive diffusion mechanisms of OMP generation due to a difference in the 
VDAC’s permeability to various charged metabolites under their steady-state circulation through the 
mitochondrial outer membrane. Circles: red, ATPase; green, creatine kinase; gray, adenylate kinase
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For the most general case (Fig. 9.1b), ADP production in the cytosol by ATP 
hydrolysis results in a local increase of ADP concentration that in turn leads to a 
recovery of 1 ATP per 2 ADP in the adenylate kinase reaction, also producing 1 
AMP. To close the cycle in a steady-state process, 3 Pi, 1 ADP, and 1 AMP return 
into MIMS in exchange for 2 ATP released from MIMS into the cytosol (Fig. 9.1b).

In the cardiac and muscle cells, the largest portion of mitochondrial energy has 
been suggested to be channeled into the cytosol through the creatine kinase system 
(Kottke et  al. 1991; Schlattner et  al. 2006; Saks et  al. 2010; Guzun et  al. 2015; 
Wallimann 2015), the simplified part of which is presented in Fig. 9.1c. Earlier we 
have estimated the possibility of generation of OMP for this case on the basis of 
computational modeling (Lemeshko and Lemeshko 2000). Metabolically derived 
negative OMP up to −5 mV has been calculated using Goldman’s equations for 
steady-state fluxes of CrP2−, Pi

1− and Pi
2− through MOM, varying the maximal rate 

of CrP hydrolysis in the cytosol at a fixed rate of CrP2− production in MIMS and 
essentially arbitrary concentrations of these metabolites.

For these calculations, the voltage sensitivity of VDAC has been taken as very 
high, assuming the presence of some VDAC’s modulators in the cytosol, for exam-
ple, a protein factor “X” (Saks et  al. 1995) or some MIMS proteins (Liu and 
Colombini 1992; Holden and Colombini 1993). The protein factor “X” has been 
subsequently identified as the cytosolic protein tubulin (Rostovtseva and Bezrukov 
2008) that has been earlier shown to reversibly interact with mitochondria through 
protein component(s) in an ionic strength-insensitive manner (Bernier-Valentin and 
Rousset 1982). This first model (Fig. 9.1c) also showed that the upper values of 
generated OMP depend on the cell workload at the given maximal rate of mitochon-
drial energy production and on the MOM permeability to charged metabolites 
(Lemeshko and Lemeshko 2000).

Theoretically, all circuits presented in Fig. 9.1 might be included in a general 
computational model of the passive diffusion mechanism of metabolically depen-
dent generation of OMP. The value of OMP is assumed to depend on the rates of 
corresponding reactions and steady-state concentrations of charged metabolites 
(Fig.  9.1). In addition, the voltage-gating properties of various VDAC isoforms, 
modulated by corking up proteins and chemical factors, seem to play a crucial role 
in the MOM signaling system controlling the mitochondria-cytosol energy flux by 
generated OMP.

9.3  Outer Membrane Potential Generation Associated 
with Phosphoryl Group Transfer 
Through the Mitochondrial Membranes

According to endosymbiotic models of the evolution of eukaryotic cells, their mito-
chondria are considered to originate from former primitive aerobic bacteria that 
were captured by large anaerobic eukaryotic host cells as a new, aerobic energy 
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source (Martin et  al. 2001; Gray 2012). The acquired prokaryotic bacteria were 
compartmentalized due to their wrapping by the plasma membrane of host cells 
containing VDAC, thus converting them into mitochondria (Grimm and Brdiczka 
2007). Relatively permeable MOM allowed fast metabolic communication between 
the cytosol and the mitochondrial matrix. Such communication includes hydrogen 
shuttling from cytosolic NADH into the matrix or into MIMS, as well as ATP4−/
ADP3− turnover with continuous return of inorganic phosphate into the mitochon-
drial matrix after ATP hydrolysis in the cytosol.

It has been suggested that the smart mechanism of mitochondrial energy export 
to the cytosol is not to transfer ATP but rather to transfer phosphoryl group from 
ATP produced in the mitochondrial matrix to either glucose or creatine through 
ANT coupled to hexokinase or creatine kinase, respectively (Grimm and Brdiczka 
2007). It has also been reported that Pi may play a role in the regulation of cell res-
piration, as a substrate feedback control (Scheibye-Knudsen and Quistorff 2009), 
and that the mechanism of permeation of monovalent Pi through VDAC remarkably 
differs from those of divalent Pi, AMP, and ATP (Krammer et al. 2015). Thus, Pi 
seems to be a very important anionic metabolite of the mitochondria-cytosol energy 
transfer system and of respiratory feedback control (Jeneson et al. 2011).

We have considered the structural and functional organization of VDAC- 
mediated phosphoryl group transfer to be crucial for the suggested active mecha-
nisms of metabolically dependent generation of OMP (Lemeshko 2002, 2014a, 
2016). As shown in Fig. 9.2, the mitochondria-cytosol transfer of phosphoryl groups 
might be realized through the VDAC-HK electrogenic complexes of MOM 
(Fig. 9.2a), through the bi-transmembrane ANT-VDAC (Fig. 9.2b) and ANT-CK- 
VDAC (Fig. 9.2c) electrogenic contact sites. The most general characteristic of all 
of these pathways is the continuous return of Pi from the cytosol into MIMS through 
free, unbound VDACs in MOM.

The concept of the channeling of phosphoryl groups of mitochondrial ATP to 
the specific cytosolic energy consumers (Schlattner et al. 2006; Saks et al. 2010; 
Guzun et al. 2015) represents a great interest. In order to coordinate mitochondrial 
and cytosolic ATP producing systems, aimed to maintain cell energy homeostasis, 
such energy channeling requires metabolic feedback control. It could be realized 
through the metabolically dependent generation of OMP as an electrical signaling 
system modulating MOM permeability to charged macroergic compounds 
(Fig. 9.2). This type of regulation is consistent with the highly conserved voltage-
gating properties of VDACs (Shoshan-Barmatz et  al. 2010; Colombini and 
Mannella 2012) and with the existence of many physiological modulators of the 
VDAC’s conductance and voltage sensitivity (Colombini et  al. 1996; Lemasters 
and Holmuhamedov 2006; Shoshan-Barmatz et  al. 2010; Kerner et  al. 2012; 
Rostovtseva and Bezrukov 2008, 2012, 2015; Sheldon et al. 2011, 2015; Maldonado 
et al. 2013; Rostovtseva et al. 2015; Okazaki et al. 2015; De Pinto et al. 2016), in 
addition to the cell-specific structural organization of mitochondrial energy chan-
neling systems through the VDAC-kinase complexes (Kottke et al. 1991; Lemeshko 
2002, 2014a, 2016; Schlattner et al. 2006; Saks et al. 2010; Mathupala and Pedersen 
2010; Guzun et al. 2015).
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Fig. 9.2 Possible active mechanisms of OMP generation mediated by steady-state phosphoryl 
group transfer through the mitochondrial membranes. a Direct generation of OMP by the 
VDAC-HK electrogenic complexes using the Gibbs free energy of the HK reaction; b OMP gen-
eration due to an application of a part of IMP to MOM through the ANT-VDAC electrogenic 
contact sites; c OMP generation due to an application of a part of IMP to MOM through the ANT- 
CK- VDAC electrogenic contact sites and using the Gibbs free energy of the CK reaction associ-
ated with them; a–c equivalent electrical circuits of the models a–c, in which points 1 and 2 are the 
MIMS and cytosolic sides of MOM, Rv is the resistance of free, unbound VDACs in MOM, and Co 
represents MOM as an electrolytic capacitor, resulting in charge separation (K+, Cl−, Ca2+, etc.) in 
an electric field of OMP
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9.3.1  Generation of the Outer Membrane Potential 
by the VDAC-HK Electrogenic Complexes

It has been reported in the literature that the binding of HK to VDACs (Pastorino 
and Hoek 2008; Abu-Hamad et al. 2008; Mathupala and Pedersen 2010; John et al. 
2011) leads to a decrease in the conductance of VDAC reconstituted into planar 
lipid membrane (Azoula-Zohar et al. 2004) and that the kinetic properties of HK 
bound to mitochondria are very different to those of free HK (Wilson 2003). A very 
interesting phenomenon of the energy metabolism in cancer cells is the extremely 
high quantity of HK bound to mitochondria, more than two orders of magnitude 
higher in liver cancer cells than in normal hepatocytes (Marín-Hernández et  al. 
2006). The preferential high-affinity binding of HK to the ANT-VDAC contact sites 
has also been reported (Brdiczka et al. 2006). Although the intermembrane contact 
sites have not been detected for some types of cancer cells, these cells contain a very 
high quantity of mitochondrial HK (Denis-Pouxviel et al. 1987), which is known to 
bind to VDACs beyond the contact sites with less affinity, forming VDAC-HK com-
plexes (Brdiczka et al. 2006), as shown in Fig. 9.2a.

For the computational analysis of three models of OMP generation, shown in 
Fig. 9.2, all quantities of VDACs in MOM for each model were normalized to one 
arbitrary unit, representing the sum of the fraction Nc of VDACs forming VDAC-HK 
(Fig. 9.2a), ANT-VDAC (Fig. 9.2b), or ANT-CK-VDAC (Fig. 9.2c) complexes and 
of the fraction of free, unbound VDACs. For the majority of calculations, the frac-
tion of unbound VDACs has been considered as only the fraction of voltage- 
sensitiveVDAC1 and VDAC2 isoforms, Nvs:

 N Nc vs+ =1  (9.1)

The fraction Nc of VDACs forming VDAC-kinase complexes of MOM or bi- 
transmembrane contact sites (Fig. 9.2a–c) represents numerically the relative con-
ductance gc to transfer phosphoryl groups through them (Fig.  9.2a–c, where 
Rc = 1/gc):

 g Nc c=  (9.2)

For the steady-state return of Pi
− into MIMS through MOM, the Pi

− conductance 
gvs of the fraction Nvs of voltage-sensitive unbound VDACs in MOM was presented 
as a bell-shaped function of OMP (Fig. 9.3):

 
g N G G S OMPvs vs c c= × + -( ) × - ×( )é

ë
ù
û

1
3

exp .
 

(9.3)

Here, the parameter Gc is the relative Pi
− conductance of unbound VDACs in the 

closed state as a fraction of that in the open state. It was ranged from Gc = 0.5 to 
Gc = 0.1 (Hodge and Colombini 1997). S is the voltage sensitive parameter. For 

9 The Mitochondrial Outer Membrane Potential as an Electrical Feedback Control…



226

calculations, the latter was taken at S = 40 V−1 or S = 50 V−1 (Fig. 9.3). The shape of 
the VDAC conductance-voltage curve with the power index of 3 is somewhat differ-
ent to that with the power index of 2 (Lemeshko 2014a):

 
g N G G S OMPvs vs c c= × + -( ) × - ×( )é

ë
ù
û1

2
exp ,

 
(9.4)

With the aim to estimate the influence of the shape of the VDAC conductance- 
voltage function on the probability of OMP generation and MOM permeability 
modulation, some calculations were also performed using Eq. 9.4 in comparison to 
those performed using Eq. 9.3.

Actually, there is significant variation among the reported VDAC conductance- 
voltage plots, obtained under different experimental conditions (Mangan and 
Colombini 1987; Rostovtseva et  al. 2008; Shoshan-Barmatz et  al. 2010, 2015; 
Teijido et al. 2014; Okazaki et al. 2015; Maurya and Mahalakshmi 2015). The shape 
of these plots may be fitted with Eq. 9.4 using the power index ranging from 2 (or 
less) to 3 (or greater) and changing the voltage-sensitive parameter S. A physical 
mechanism that would allow the description of VDAC voltage-gating properties 
with an equation like Eq. 9.4, depending on the experimental conditions, such as pH 
changes (Teijido et al. 2014), the presence of polyvalent anions, or some proteins 
(Mangan and Colombini 1987; Rostovtseva et al. 2008), SH/SS redox state of vari-
ous VDAC isoforms (Okazaki et al. 2015), has to be determined yet.

On the basis of experiments with knockdown of various VDAC isoforms, the 
minor VDAC3 isoform, having very low voltage sensitivity, has been reported as the 
most important for maintenance of mitochondrial metabolism, at least in HepG2 
cancer cells (Maldonado et al. 2013). That is why we also estimated the influence of 
the presence of VDAC3 fraction and of its theoretical knockout on generation of 
OMP by the VDAC-HK-complexes. The free, unbound VDAC3 isoform was 
included as the fraction Nvi of voltage-insensitive VDACs, for simplicity, (always 
open at least in the range of ±50 mV for OMP) by replacing a part of the fraction Nvs 
of voltage-sensitive VDACs, thus transforming Eq. 9.3 into

Fig. 9.3 VDAC voltage- 
gating characteristics used 
for computational analysis 
of the models. Gc relative 
Pi- conductance of VDAC 
in the closed state, S 
voltage sensitivity 
parameter; a, b Gc = 0.5; c, 
d Gc = 0.1; Solid lines at 
S = 40 V-1; Dashed lines at 
S = 50 V-1; Gc = 0.1–0.5 
were used for calculations
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g N N G G S OMP Nvs vs vi c c vi= -( ) × + -( ) × - ×( )é
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ù
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3
exp .

 
(9.5)

If in addition, we assume a knockout of the fraction Nvi, Eq. 9.5 will be trans-
formed into

 
g N N G G S OMPvs vs vi c c= -( ) × + -( ) × - ×( )é

ë
ù
û

1
3

exp .
 

(9.6)

The fraction of VDAC3 was taken at Nvi = 0.1, i.e., 10% of all VDACs, very close 
to 11% reported by Maldonado et al. (2013).

The VDAC-HK electrogenic complexes of MOM may be considered direct volt-
age generators (Fig. 9.2a, a), which use the Gibbs free energy of the essentially 
irreversible HK reaction of energized mitochondria at high ratio [ATP]s/[ADP]s in 
MIMS. The voltage Vvh of such VDAC-HK battery Evh (Fig. 9.2a, a) may be esti-
mated (Lemeshko 2014a) as
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Here, [G6P]c and [Gluc]c are the cytosolic concentrations of glucose-6- phosphate 
and glucose, respectively, and G kJ molh

¢ = -o 16 7. /  is the standard Gibbs free 
energy of the HK reaction at pH = 7. For calculations, the ratio [Gluc]c/[G6P]c was 
varied from 0.1 to 100. Taking into account that under normal physiological condi-
tions [G6P]c  =  0.1  mM, approximately, it means that the calculations were per-
formed at glucose concentrations of up to 10 mM (at [Gluc]c/[G6P]c = 100).

The ratio [ATP]s/[ADP]s in MIMS (TDs) may be determined from a given value 
of the mitochondrial phosphorylation potential, ΔGa, defined as

 
RTlnG G

P

TDa a
o i s

s

= +
éë ùû¢ ,

,
 

(9.8)

where G kJ mola
o¢ = -31 /  is the standard Gibbs free energy of ATP hydrolysis at 

pH = 7.0. For calculations, we used ΔGa =  − 61 kJ/mol that is near the values 
reported in the literature for the resting state of cells (Wallis et  al. 2005; Pinz 
et  al. 2008). The concentration of Pi in MIMS was considered constant, at 
[Pi,s] = 5 mM, in the range for moderate workloads of isolated perfused mouse 
hearts (Spindler et al. 2002).

The voltage Vvh of VDAC-HK complexes, calculated according to Eqs. 9.7 and 
9.8 at ΔGa =  − 61 kJ/mol, partially drops on the internal resistance Rc (1/gc) of the 
battery Evh, as well as on the resistance Rv (1/gvs) of free, unbound VDACs in MOM, 
thus providing direct generation of OMP (Fig. 9.2a, a) that can be estimated on the 
basis of Ohm’s law:
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OMP was calculated for various fractions Nc of VDACs forming such VDAC-HK 
complexes, and also as a function of the [Gluc]c/[G6P]c ratio, using the system of 
Eqs. 9.1, 9.2, and 9.7–9.9 and one of Eqs. 9.3, 9.5, and 9.6, depending on the pres-
ence of VDAC3 isoform and on its theoretical knockout (see figure legends). The 
software Mathcad Professional was used for all calculations.

First, the computational analysis was performed at the voltage sensitivity param-
eter S = 40 V−1 and the Pi

− conductance parameter Gc = 0.4 for voltage-sensitive 
VDACs. At a high concentration of glucose, the calculations demonstrated genera-
tion of a remarkable OMP if only 3.5% of all VDACs in MOM form VDAC-HK 
complexes (i.e., at Nc = 0.035) or even at very small glucose concentrations, if Nc 
was increased to Nc = 0.04 (Fig. 9.4a). The calculated OMP is high enough to elec-
trically restrict MOM permeability to Pi

− through voltage-sensitive VDACs, depend-
ing on the [Gluc]c/[G6P]c ratio and on the percentage VHK of VDACs forming 
VDAC-HK complexes in MOM (VHK = 2–4% in Fig. 9.4b, where VHK = Nc

.100%).
Many factors have been reported to modulate VDAC’s voltage sensitivity and 

conductance, as referred above. One of such most powerful factors seems to be free 
tubulin, suggested to maintain VDAC1 and VDAC2 isoforms in a mostly closed 
state and to increase VDAC’s voltage sensitivity (Rostovtseva et  al. 2008; 
Rostovtseva and Bezrukov 2012, 2015; Maldonado et al. 2013). The great impor-
tance of such properties of free tubulin to modulate the VDAC-HK-dependent gen-
eration of OMP was evaluated by increasing the parameter S from S  =  40 to 
S = 50 V−1, and by decreasing the parameter Gc from Gc = 0.4 to only Gc = 0.3 
(Eq. 9.3, Fig. 9.3). The calculations demonstrated a very strong increase in OMP 
due to both an increase in S (Fig. 9.4c) and a decrease in Gc (Fig. 9.4e), in compari-
son to OMP values calculated for the case of S = 40 and Gc = 0.4 (Fig. 9.4a). This 
increase in OMP resulted in corresponding significant electrical restriction of MOM 
permeability to Pi

− (Fig. 9.4d, f) compared with the data determined for the case of 
S = 40 and Gc = 0.4 (Fig. 9.4b).

Under the same conditions, significantly lower values of OMP were calculated 
when a relatively small fraction of unbound voltage-sensitive VDACs was replaced 
by the fraction Nvi of voltage-insensitive VDACs, taking Nvi = 0.1 (Fig. 9.5a). In this 
case, the fraction of Nvs was reduced (Eq. 9.5), for example, from Nvs = 0.96 to 
Nvs = 0.96-Nvi. Because of the lower values of OMP (Fig. 9.5a in comparison to 
Fig. 9.4a), the electrical restriction of MOM permeability to Pi

− was also signifi-
cantly reduced (Fig. 9.5b in comparison to Fig. 9.4b).

To estimate the possible effects of knockout of the fraction Nvi of VDACs, Eq. 9.5 
was replaced by Eq. 9.6, conserving the reduced fraction Nvs, i.e., the same Nvs value 
that was before Nvi knockout. The calculations demonstrated that the theoretical 
knockout of Nvi = 0.1 strongly increased the probability of generation of high OMP 
(Fig. 9.5c) and of electrical restriction of MOM permeability to Pi

− (Fig. 9.5d).
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Interestingly, even in the presence of voltage-insensitive fraction Nvi of VDAC’s, 
at Nvi = 0.1, high OMP (Fig. 9.5e) and pronounced electrical restriction of MOM 
permeability to Pi

− (Fig. 9.5f) may be expected on increase in the voltage sensitivity 
parameter S and on decrease in the parameter Gc (Eq. 9.5). Such effects might be 
caused by free tubulin (Rostovtseva et  al. 2008) interacting mainly with the 
 voltage- sensitive VDAC1 and VDAC2, but not with the voltage-insensitive VDAC3 
isoform (Maldonado et al. 2013).

Fig. 9.4 OMP generation (a, c, e) and electrical restriction of the MOM permeability to Pi
− (gvs) 

(b, d, f) according to the VDAC-HK model (Fig. 9.2a) in mitochondria with the phosphorylation 
potential ΔGa =  − 61 kJ/mol (Eq. 9.8 at [Pi,s] = 5 mM) as functions of the ratio [Gluc]c/[G6P]c in 
the cytosol (Eq. 9.7) and of the fraction Nc of VDACs forming VDAC-HK complexes (VHK,% = 
Nc

.100%). a, b At S = 40 V−1 and Gc = 0.4; c, d at S = 50 V−1 and Gc = 0.4; e, f at S = 40 V−1 and 
Gc = 0.3. The calculations were performed using the system of Eqs. 9.1–9.3, 9.7–9.9
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In the presence of small inorganic ions, the generated OMP has been assumed to 
dissipate due to a high permeability to these ions of unbound VDACs, even in their 
closed state (Lemasters and Holmuhamedov 2006). Nevertheless, as the suggested 
mechanisms of OMP generation are steady state (Fig. 9.2), due to the continued 
circulation of phosphoryl groups and Pi, OMP should be recovered after reaching 
the electrochemical equilibrium for small ions, such as K+, Cl−, and Ca2+, that can be 
presented as a process of the charging of an electrolytic capacitor Co (Fig. 9.2a–c).

Fig. 9.5 The influence of a small fraction of voltage-insensitive VDACs, Nvi and of its theoretical 
knockout on OMP generation (a, c, e) and electrical restriction of the MOM permeability to Pi

− 
(gvs) (b, d, f) according to the VDAC-HK model (Fig. 9.2a) in mitochondria with the phosphoryla-
tion potential ΔGa =  − 61 kJ/mol (Eq. 9.8 at [Pi,s] = 5 mM) as functions of the ratio [Gluc]c/[G6P]c 
in the cytosol (Eq.  9.7) and of the fraction Nc of VDACs forming VDAC-HK complexes 
(VHK,% = Nc

.100%). a, b At Gc = 0.4, S = 40 V−1, Nvi = 0.1 (Eq. 9.5); c, d at Gc = 0.4, S = 40 V−1 and 
knockout of Nvi = 0.1 (Eq. 9.6); e, f at Gc = 0.3, S = 50 V−1, Nvi = 0.1 (Eq. 9.5). The system of 
Eqs. 9.1, 9.2, and 9.7–9.9, with Eq. 9.5 or Eq. 9.6, was used for respective calculations
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9.3.2  ANT-VDAC-Mediated Generation of the Outer 
Membrane Potential

One of the mechanisms of OMP generation might be coupled to the transfer of 
negative phosphoryl groups from the mitochondrial matrix ATP to the cytosol 
through the ANT-VDAC complexes (Fig.  9.2b), as it has been suggested earlier 
(Lemeshko 2002). This mechanism may be explained by the simplest equivalent 
electrical circuit shown in Fig. 9.2b, b.

For the electrochemical equilibrium of ATP4−/ADP3− turnover through the ANT- 
VDAC contact sites (Fig. 9.2b), the voltage Vav of the battery Eav (Fig. 9.2b, b) may 
be described by Nernst’s equation as

 
V

RT

F

TD

TDav
c

m

= - ln ,
 

(9.10)

where R is the universal gas constant, T = 310 K is normal body temperature, and 
F is the Faraday constant, giving RT/F = 26.7 mV. Here TDc = [ATP]c/[ADP]c and 
TDm = [ATP]m/[ADP]m are corresponding concentration ratios in the cytosol and 
in the mitochondrial matrix, respectively. TDm for respiring mitochondria was 
considered fixed at TDm  =  3 (Korzeniewski and Mazat 1996). Thus, the ANT-
VDAC electrogenic complexes may be presented as a battery Eav with voltage Vav, 
which depends on TDc that in turn may be defined by the ATP phosphorylation 
potential in the cytosol. The internal resistance Rc (Fig. 9.2b, b) of the battery Eav 
is inversely proportional to the conductance gc of the fraction Nc of mitochondrial 
VDACs forming the intermembrane contact sites (Rc = 1/gc, taking into account 
that gc = Nc, Eq. 9.2).

The steady-state ATP4−/ADP3− electrogenic turnover and the Pi
− return into 

MIMS will depend on IMP and on the TDc ratio immediately at the external side of 
MOM, providing OMP generation as a voltage drop on the resistance Rv of unbound 
VDACs (Fig. 9.2b, b), as described earlier (Lemeshko 2002). The sign and value of 
OMP depend on both Vav (Eq. 9.10) and IMP. According to the electrical circuit 
(Fig. 9.2b, b), OMP will be zero at Vav = IMP (where Vav is the voltage of the battery 
Eav), or OMP will be positive if the value of IMP is greater than that of Vav. A nega-
tive OMP is expected when the IMP value is less than that of Vav, in the case of a 
relatively high TDc ratio in the cytosol, maintained by glycolysis, and a low phos-
phorylation potential of mitochondria, ΔGa defined by Eq. 9.8.

On the other hand, at high cell workloads, accompanied by a relatively low 
steady-state TDc ratio, the greatest portion of IMP in respiring mitochondria will be 
applied to the ANT-VDAC contact sites through the unbound VDACs of MOM 
(Fig.  9.2b), thus functioning as a driving force directly moving the phosphoryl 
groups from the mitochondrial matrix ATP toward the cytosol.

OMP, generated as the voltage drop on MOM (Fig.  9.2b), on the resistance 
Rv = 1/gvs, may be presented according to Ohm’s law (Fig. 9.2b, b) as
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Here, gc = 1/Rc. For the simplicity of thermodynamic estimations, we took IMP 
at a fixed value of −140 mV (Gerencser et al. 2012; Bagkos et al. 2014) and the 
concentration of Pi in the cytosol at [Pi,c] = 5 mM. In accordance with the well- 
known ratio of four protons returning into the matrix from MIMS per each synthe-
sized ATP molecule, the phosphorylation potential maintained by respiring 
mitochondria, ΔGa, may be presented as
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Under the described conditions, taking ΔpH = 0.3 across MIM (relatively alka-
line matrix), Eq. 9.12 gives ΔGa =  − 61 kJ/mol, the same as the values used above 
for the computational analysis of the VDAC-HK model.

In the cytosol, the free energy of ATP hydrolysis, i.e., the cytosolic ATP phos-
phorylation potential, ΔGa,c, is the function of the ratio TDc = [ATP]c/[ADP]c, at a 
fixed [Pi,c] = 5 mM:
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Here, G kJ mola
o¢ = -31 /  is the standard Gibbs free energy of ATP hydrolysis 

at pH = 7.0. The thermodynamic analysis of the model of ANT-VDAC contact sites 
(Fig. 9.2b, b) was performed by solving the system of Eqs. 9.1–9.3 and 9.10–9.13.

First, OMP and relative permeability of MOM to Pi
− (gvs) (Fig. 9.6a, b, respec-

tively) were estimated at the phosphorylation potential of mitochondria 
ΔGa =  − 61 kJ/mol as functions of the ATP phosphorylation potential in the cytosol, 
ΔGa,c, at various fractions Nvs of unbound VDACs that was varied in the range of 
Nvs = 0.4–0.8, corresponding to the fraction of VDACs forming ANT-VDAC contact 
sites Nc = 0.6–0.2, respectively.

Zero OMP was obtained at ΔGa,c = ΔGa, independently of other conditions 
(Fig. 9.6a). Calculations showed positive OMP at |ΔGa , c| < |ΔGa|, and vice versa; 
negative OMP was demonstrated at |ΔGa , c| > |ΔGa|, at Gc = 0.4 (the Pi

− conductance 
of unbound VDACs in the closed state), and S  =  40  V−1 (the voltage sensitivity 
parameter). The absolute values of the calculated OMP were higher when the differ-
ence between ΔGa,c and ΔGa was larger and also when the fraction of unbound 
VDACs, Nvs, was smaller (Fig. 9.6a).

Positive and negative OMPs, generated at relatively small fractions Nvs of unbound 
VDACs, were high enough to cause the voltage-dependent restriction of the MOM 
permeability to Pi

− (Fig. 9.6b). These results indicate the possibility of generation of 
high OMP (positive in MIMS) at increased cell workloads, accompanied with a 
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decreasing steady-state [ATP]c/[ADP]c ratio in the cytosol (TDc), while negative 
OMP might be expected at relatively high ATP phosphorylation potential in the cyto-
sol (ΔGa,c) with respect to mitochondria, maintained, for example, by glycolysis 
under hypoxic/anoxic conditions.

We also estimated the possible dependence of generated OMP on the conduc-
tance Gc of unbound VDACs in their closed state, at the voltage sensitivity  parameter 
S = 50 V−1, that might result from the action of some VDAC’s modulators. The 
calculations performed for Nvs = 0.6 as a function of ΔGa,c showed the possibility of 
generation of positive and negative OMPs, which were of higher values at lower Gc 
(Fig. 9.6c). In addition, it revealed the very interesting phenomenon of energy trans-
fer optimization, showing higher MOM permeability to Pi

− in a relatively narrow 
range of ΔGa,c changes in the cytosol, around the given mitochondrial phosphoryla-
tion potential ΔGa =  − 61 kJ/mol (Fig. 9.6d).

Thus, the performed thermodynamic estimations showed the possibility of electrical 
suppression of mitochondria by positive OMP generated at very high cell workloads, i.e., 
at relatively low values of the ATP phosphorylation potential in the cytosol near mito-
chondria, ΔGa,c, as well as of the electrical suppression by negative OMP generated at 
ΔGa,c significantly higher than the phosphorylation potential of mitochondria (Fig. 9.6d).

Fig. 9.6 OMP generation (a, c) and electrical restriction of the MOM permeability to Pi
− (gvs) (b, 

d) according to the ANT-VDAC model (Fig.  9.2b) in mitochondria with the phosphorylation 
potential ΔGa =  − 61 kJ/mol (Eq. 9.12) as a function of cytosolic ATP phosphorylation potential 
ΔGa,c (Eq. 9.13 at [Pi,c] = 5 mM), depending on the fraction Nvs of unbound VDACs (a, b) and on 
the conductance of unbound VDACs in the closed state (Gc) (c, d). a, b At Gc = 0.4 and S = 40 V−1; 
c, d at Nvs = 0.6 and S = 50 V−1. The calculations were performed using the system of Eqs. 9.1–9.3 
and 9.10–9.13
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Note, these calculations were performed assuming the changes of the steady- 
state ratio TDc = [ATP]c/[ADP]c in the cytosol immediately near the mitochondrial 
ANT-VDAC contact sites, required by Eq. 9.10. The ratio TDc may be very different 
at some distance from mitochondria due to a restriction of ADP electro-diffusion in 
the cytosol (Wallimann et al. 2011; Simson et al. 2016).

9.3.3  ANT-CK-VDAC-Mediated Generation of the Outer 
Membrane Potential

The mitochondrial and cytosolic CK reactions are parts of the most powerful energy 
channeling system postulated for various types of mammalian cells (Schlattner 
et al. 2006; Saks et al. 2010; Wallimann et al. 2011, 2015). It has been suggested 
that the octameric CK of mitochondria forms the intermembrane ANT-CK-VDAC 
contact sites.

Here we estimated the possibility of OMP generation by tightly coupled mito-
chondrial bi-transmembrane ANT-CK-VDAC contact sites allowing direct usage of 
mitochondrial matrix ATP for the CK reaction associated with the ANT-CK-VDAC 
contact sites to produce cytosolic CrP from cytosolic Cr (Fig. 9.2c), as it has been 
suggested by various authors (Brdiczka et al. 2006; Saks et al. 2010; Wallimann 
et al. 2011; Guzun et al. 2015).

The functioning of ANT-CK-VDAC contact sites might be presented as a battery 
Eacv (Fig. 9.2c, c) with a voltage Vacv that depends on the Gibbs free energy of the CK 
reaction associated with these contact sites:
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Here, G kJ molCK
o¢ = -12 7. /  is the standard Gibbs free energy of CK reaction 

at pH = 7.0, and [ATP]m and [ADP]m are ATP and ADP concentrations, respectively, 
in the mitochondrial matrix, with the ratio [ATP]m/[ADP]m = 3 (Korzeniewski and 
Mazat 1996), considered invariable. [Cr]c and [CrP]c are cytosolic concentrations of 
Cr and CrP, respectively, with the ratio [CrP]c/[Cr]c defined by a given CrP phos-
phorylation potential in the cytosol, ΔGc,c:
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where G kJ molc
o¢ = -43 7. /  is the standard Gibbs free energy of CrP hydrolysis at 

pH = 7.0 and [Pi,c] is the concentration of inorganic phosphate in the cytosol fixed at 
5 mM, as defined above.
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A part of the voltage difference between Vacv and IMP will drop on the internal 
resistance Rc (1/gc) of the battery Eacv (Fig. 9.2c, c) and the other part will drop on 
the resistance Rv (1/gvs) of unbound VDACs as OMP that may be estimated on the 
bases of Ohm’s law:
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For calculations, IMP was set at a fixed −140 mV, as mentioned above.
The calculations (solving the system of Eqs. 9.1–9.3, 9.12, 9.14–9.16) of OMP 

and of the electrical restriction of MOM permeability to Pi
− (gvs) for the model of 

ANT-CK-VDAC contact sites (Fig. 9.2c) were performed as a function of the CrP 
phosphorylation potential in the cytosol, ΔGc,c. The fraction Nc of VDACs forming 
such bi-transmembrane contact sites was varied in the range of Nc  =  0.2–0.8 
(Fig.  9.7), with the respective changes in the fraction Nvs of unbound VDACs, 
Nvs = 0.8–0.2. The voltage sensitivity parameter S for these calculations was taken 
at S = 40 V−1 (Fig. 9.7a, b) and S = 50 V−1 (Fig. 9.7c, d).

Fig. 9.7 OMP generation (a, c) and electrical restriction of MOM permeability to Pi
− (gvs) (b, d) 

according to the ANT-CK-VDAC model (Fig.  9.2c) in mitochondria with the phosphorylation 
potential ΔGa =  − 61 kJ/mol (Eq. 9.12) as a function of the CrP phosphorylation potential in the 
cytosol ΔGc,c (Eq. 9.15 at [Pi,c] = 5 mM), depending on the fraction Nvs of unbound VDACs. a, b 
At Gc = 0.4 and S = 40 V−1; c, d at Gc = 0.2 and S = 50 V−1. The calculations were performed using 
the system of Eqs. 9.1–9.3, 9.12, and 9.14–9.16
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The thermodynamic estimations, performed for the range of CrP phosphoryla-
tion potential in the cytosol between ΔGc , c =  − 56 kJ/mol and ΔGc , c =  − 66 kJ/mol, 
at S  =  40  V−1 and Gc  =  0.4, demonstrated the dependence of calculated OMP 
(Fig. 9.7a) and of the MOM permeability to Pi

− (Fig. 9.7b) on ΔGc,c, very similar to 
that obtained for the model of ANT-VDAC contact sites, in the range of Nvs = 0.4–
0.8 (Figs.  9.6a, b, respectively). Relatively high values of OMP were calculated 
outside of the relatively narrow range of ΔGc,c changes around the fixed value of the 
mitochondrial phosphorylation potential ΔGa =  − 61 kJ/mol, for the conditions of 
Gc = 0.2 and S = 50 V−1 (Fig. 9.7c), also showing a significant electrical restriction 
of MOM permeability to Pi

− (Fig. 9.7d).
We also estimated the influence of the Pi

− conductance of unbound VDACs in the 
closed state, Gc, changing it in the range of Gc  =  0.1–0.5, at fixed parameters 
Nvs = 0.6 and S = 50 V−1 (Fig. 9.8). The calculations were performed by solving the 
system of Eqs. 9.1, 9.2, 9.12, and 9.14–9.16 together with Eq. 9.3 (with the power 
index of 3) (Fig. 9.8a, b) or with Eq. 9.4 (with the power index of 2) (Fig. 9.8c, d). 
One of the goals was to estimate the influence of possible changes in the shape of 
the conductance-voltage function of VDAC on the probability of OMP generation 
and MOM permeability modulation (Fig. 9.8).

Fig. 9.8 OMP generation (a, c) and electrical restriction of MOM permeability to Pi
− (gvs) (b, d) 

according to the ANT-CK-VDAC model (Fig.  9.2c) in mitochondria with the phosphorylation 
potential ΔGa =  − 61 kJ/mol (Eq. 9.12) as a function of the CrP phosphorylation potential in the 
cytosol ΔGc,c (Eq. 9.15 at [Pi,c] = 5 mM), depending on the conductance of unbound VDACs in the 
closed state (Gc). The calculations were performed at fixed Nvs = 0.6 and S = 50 V−1 using the 
system of Eqs. 9.1–9.3, 9.12, and 9.14–9.16 (a, b) or the system of Eqs. 9.1, 9.2, 9.4, 9.12, and 
9.14–9.16 (c, d)
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The calculations performed using Eq.  9.3, in the abovementioned system of 
equations, for the fraction Nvs = 0.6 of unbound VDACs, at different values of the 
parameter Gc and the voltage-sensitivity parameter S = 50 V−1, allowed demonstra-
tion of a strong dependence of the sign and value of calculated OMP on ΔGc,c 
(Fig. 9.8a). The range of ΔGc,c changes, around ΔGa =  − 61 kJ/mol, for almost unre-
stricted, optimum energy transfer between mitochondria and the cytosol, was more 
narrow at the lowest values of the parameter Gc (Fig. 9.8b). Qualitatively, similar 
results were obtained using Eq. 9.4, instead of Eq. 9.3, in the system of equations 
for calculation of OMP (Fig.  9.8c) and MOM permeability to Pi

− (Fig.  9.8d). 
Nevertheless, the steeper slopes of the functions of OMP and MOM permeability to 
Pi

− on ΔGc,c were revealed using Eq. 9.3 (Fig. 9.8a, b, respectively) than those for 
Eq.  9.4 (Fig.  9.8c, d, respectively). With this respect, various factors have been 
reported to change the steepness of the VDAC voltage dependence (Mangan and 
Colombini 1987; Lee et  al. 1996; Rostovtseva et  al. 2008; Teijido et  al. 2014; 
Okazaki et al. 2015).

The most interesting results of the performed computational analysis of the 
model of electrogenic ANT-CK-VDAC contact sites (Fig. 9.2c) are the possibility 
of electrical suppression of mitochondria by generated OMP when the cytosolic 
CrP phosphorylation potential is significantly different from the phosphorylation 
potential of mitochondria (Figs. 9.7a, c and 9.8a, c). This effect is strongly increased 
when the parameter Gc of the Pi

− conductance of unbound VDACs in the closed 
state is decreased and when the voltage sensitivity parameter S is increased. Both 
parameters were reported to be controlled by tubulin and other physiological modu-
lators of VDAC’s voltage-gating properties (Liu and Colombini 1992; Colombini 
et al. 1996; Lee et al. 1996; Lemasters and Holmuhamedov 2006; Rostovtseva et al. 
2008; Shoshan-Barmatz et  al. 2010; Rostovtseva and Bezrukov 2012, 2015; 
Maldonado et al. 2013).

9.4  Possible Physiological Consequences of Generation 
of the Mitochondrial Outer Membrane Potential

The flux of macroergic compounds and respiratory metabolites between mitochon-
dria and the cytosol is provided by VDACs in MOM (Rostovtseva and Colombini 
1997; Colombini 2004; Lemasters and Holmuhamedov 2006; Shoshan-Barmatz 
et al. 2010; Colombini and Mannella 2012). The main unresolved question in this 
respect is the physiological role of the highly conserved VDAC’s voltage-gating 
properties (Colombini and Mannella 2012). In any case, in order for these VDAC’s 
voltage-gating properties to play a crucial role in cell energy homeostasis, a high 
enough OMP has to be generated as an electrical feedback control of mitochondrial 
and cell energy metabolism. According to Mannella et al. (1992), it seems to be 
unlikely that VDACs simply convert MOM into a coarse sieve. We may add that it 
seems to also be unlikely that the VDAC permeability is regulated by only molecu-
lar corks, without voltage gating of VDACs by metabolically derived OMP.
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Actually, various possibilities exist for OMP generation. One group of the mech-
anisms of OMP generation might be classified as passive diffusion mechanisms 
(Fig. 9.1), based on the difference in the VDAC’s permeability to charged metabo-
lites, mainly to ATP4−, ADP3−, AMP2−, CrP1−(CrP2−), and Pi

1−(Pi
2−) (Hodge and 

Colombini 1997; Vander Heiden et al. 2000; Colombini 2016), in addition to the 
Donnan potential suggested by various authors (Liu and Colombini 1992; Porcelli 
et al. 2005 and references therein) as a possible regulator of MOM permeability that 
may be superimposed on the metabolically derived OMP (Lemeshko and Lemeshko 
2000; Lemeshko 2006).

Another group represents active mechanisms of OMP generation, based on the 
phosphoryl group transfer through the mitochondrial membranes coupled to various 
energy sources (Lemeshko 2002, 2014a, 2016). The three possible mechanisms of 
this type were described here (Fig. 9.2) and analyzed using simplified computa-
tional models by performing thermodynamic estimations of a possible range of 
changes of generated OMP at various VDAC’s voltage-gating properties.

The simplest and the most powerful mechanism of OMP generation, based on 
the phosphoryl group transfer through MOM, seems to be the energy-dependent 
transmembrane separation of charges by the electrogenic VDAC-HK complexes 
(Fig. 9.2a) (Lemeshko 2002, 2014a; Lemeshko and Lemeshko 2004). The Gibbs 
free energy of the HK reaction is used by these complexes, functioning as a direct 
MOM voltage generator. Computational analysis of the VDAC-HK model (Fig. 9.2a) 
demonstrated the generation of OMP of only positive sign (in MIMS), due to the 
essentially irreversible HK reaction. High values of OMP were calculated even at 
relatively low concentrations of glucose (at low ratios [Gluc]c/[G6P]c in the cytosol) 
and low percentage of VDACs forming VDAC-HK complexes (Figs. 9.4 and 9.5). 
Similar results were obtained for the model of OMP generation involving electro-
genic bi-transmembrane ANT-VDAC-HK contact sites (data not shown). The calcu-
lated OMPs were high enough to cause a significant electrical restriction of the 
MOM permeability of respiring mitochondria to Pi

− (Figs. 9.4 and 9.5) and to other 
charged metabolites (Rostovtseva and Colombini 1997; Hodge and Colombini 
1997; Vander Heiden et al. 2000; Colombini 2016).

A very important characteristic of most cancer cells is a high quantity of HK 
bound to the mitochondrial VDACs, more than two orders of magnitude higher than 
in normal cells (Marín-Hernández et  al. 2006; John et  al. 2011 and references 
therein). The computational analysis of the VDAC-HK model demonstrated that 
OMP generation is potentiated by even a relatively small decrease in the VDAC’s 
closed-state conductance Gc or by an increase in the VDAC’s voltage sensitivity 
parameter S (Figs. 9.4 and 9.5). Based on the high probability of OMP generation 
by the VDAC-HK complexes, we have suggested an explanation of the Warburg 
effect as an electrical suppression of mitochondria (Lemeshko 2002, 2014a, 2015), 
under which the mitochondrial ATP is mainly accessible to initiate glycolysis 
through the VDAC-HK complexes of MOM. The generated OMP should inhibit 
glucose phosphorylation by the mitochondria-associated HK using external ATP, 
and it should also suppress the release of ADP from MIMS to recover ATP in the 
cytosol, thus preventing glycolysis acceleration by glycolitically produced ATP. This 
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hypothetical OMP-dependent anti-turbo mechanism (Lemeshko 2014a) is consis-
tent with the observations that the kinetic properties of the unbound HK are very 
different from those of mitochondria-associated HK, which preferentially uses 
intramitochondrially generated ATP (see Wilson 2003).

The direct monitoring of OMP, and even quantitative estimation of only IMP of 
mitochondria in living cells (Lemasters and Ramshesh 2007; Gerencser et al. 2012), 
presents certain difficulties. An experimental approach for the quantitative monitor-
ing of IMP in cultured cells using cationic fluorescent probes has been recently 
suggested taking into account the contribution of the plasma membrane potential 
(Gerencser et  al. 2012) but ignoring the possible existence of OMP and thus its 
influence on the measured values of IMP. The method to measure IMP, based on the 
quantitative imaging analysis of cells with a fluorescent cationic probe TMRM, has 
also been proposed (Lemasters and Ramshesh 2007). The authors assumed that IMP 
is directly related to the logarithmic function of the ratio of the TMRM concentra-
tion within the mitochondrial matrix (Fin) to that in the cytosol/nucleus (Fout), 
according to Nernst’s equation:
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It is true, if we follow the most general concept that OMP = 0, illustrated in 
Fig. 9.9a and based on the assumption that MOM is highly permeable to charged 
metabolites and small ions. Nevertheless, it has been recently suggested that only 
2% of all VDACs in cardiomyocytes are open that followed from a description of 

Fig. 9.9 The possible 
influence of OMP on 
apparent values of IMP 
monitored with cationic 
fluorescent probes like 
TMRM. a Zero influence 
at OMP = 0 mV;  
b decreased TMRM 
capture at OMP = +20 mV, 
as it would show a 
supposed mitochondrial 
“depolarization”;  
c increased TMRM capture 
at OMP = −20 mV, as it 
would show a supposed 
mitochondrial 
“hyperpolarization.” 
Estimations were 
performed using Eq. 9.18 
at fixed IMP = −140 mV, 
assuming 1 μM TMRM 
concentration in the 
external space
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the experimental data by a model that does not consider the possibility of OMP 
generation (Simson et al. 2016). These experimental data (Simson et al. 2016), on 
the other hand, do not exclude that up to 98% of the MOM permeability might be 
blocked by the OMP-dependent closure of VDACs, if we assume that OMP is gen-
erated (Figs. 9.4, 9.5, 9.6, 9.7, and 9.8) by some of the mechanisms described here 
(Fig.  9.2). Thus, if OMP is generated, it should influence TMRM distribution 
between the cytosol and MIMS and finally between the cytosol and the mitochon-
drial matrix, thus influencing the mitochondrial TMRM fluorescence in accordance 
to the following equation:
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(9.18)

The effects of OMP on TMRM capture by respiring mitochondria may be signifi-
cant even at unchanged IMP, as shown in Fig. 9.9 for OMP = +20 mV (Fig. 9.9b) 
and OMP = −20 mV (Fig. 9.9c). These calculations were performed using Eq. 9.18 
at a fixed IMP = −140 mV (Fig. 9.9).

The experimental approach suggested by Lemasters and Ramshesh (2007) has 
been used to estimate possible changes of IMP in cancer cells with the fluorescent 
cationic probe TMRM in experiments with knockdown of various VDAC isoforms 
(Maldonado et al. 2013), as well as after cell treatments leading to a change in the 
cytosolic concentration of free tubulin (Maldonado et al. 2010). On the other hand, 
according to the VDAC-HK model (Fig. 9.2a), knockdown of VDAC isoforms and 
changes in the concentration of free tubulin should influence OMP generation and 
thus TMRM capture by mitochondria (Fig. 9.9), according to Eq. 9.18.

Only for theoretical estimations, let us calculate a possible range of OMP changes 
on the basis of the reported, very informative experimental data of Maldonado et al. 
(2010, 2013), assuming, for simplicity, that IMP of respiring mitochondria within 
the cells is maintained constant at all performed cell treatments, excepting VDAC3 
knockout. Assuming unchanged IMP, the changes of OMP, ΔOMP, may be esti-
mated (based on Eq. 9.18) as
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F

F
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,

in

in  

(9.19)

where Fin,t is the TMRM fluorescence of mitochondria after a cell treatment, hypo-
thetically influenced only by OMP, and Fin,o is the TMRM fluorescence before the 
treatment.

Interestingly, in HepG2 cancer cells, knockdown of VDAC1 or VDAC2 caused a 
decrease in mitochondrial TMRM fluorescence by nearly 42% and 58%, respec-
tively, without any influence on the mitochondrial NAD(P)H level (Maldonado 
et al. 2013, Fig. 9.1), as an indirect indicator of IMP changes (see Lemeshko 2014b). 
Thus, the mentioned decrease in TMRM fluorescence might be attributed to only an 
increase in positive OMP by 15 mV and 23 mV, respectively, according to Eq. 9.19. 
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On the other hand, knockdown of the least abundant VDAC3 isoform (11%) in 
HepG2 cells decreased mitochondrial TMRM fluorescence by nearly 80% and also 
caused remarkable decrease in the mitochondrial NAD(P)H level (Maldonado et al. 
2013, Fig. 9.1). In this case, the mentioned significant decrease in the TMRM cap-
ture by mitochondria might be explained by both MIM depolarization and an 
increase in positive OMP (Eq. 9.18).

According to the VDAC-HK model (Fig. 9.2a), the replacement of a small part 
of voltage-sensitive VDAC isoforms by voltage-insensitive VDACs (10% of all 
VDACs) significantly decreased the calculated OMP (Fig. 9.5a in comparison to 
Fig. 9.4a). On the other hand, a hypothetical knockout of this fraction (as it would 
be knock-out of VDAC3) should increase OMP by 20 mV, calculated at VHK = 4% 
and [Gluc]c/[G6P]c  =  10 (Fig.  9.5c) with respect to that before the knockout 
(Fig. 9.5a). These estimations are very consistent with the conclusion of Maldonado 
et al. (2013) that the minor VDAC3 isoform is the most important for maintenance 
of mitochondrial metabolism, at least in HepG2 cells. According to the authors, 
VDAC3 knockdown might lead to a restriction of the influx of respiratory substrates 
that reduce NAD(P)+ in the mitochondrial matrix, finally resulting in a remarkable 
decrease in the NAD(P)H/NAD(P)+ ratio (Maldonado et al. 2013). In addition, a 
knockdown of VDAC3, but not of VDAC1 and/or VDAC2, caused a significant 
impairment of mitochondria in cells.

Our model predicts that OMP increase by 20  mV after VDAC3 knockout 
(Fig.  9.5c) leads to the electrical closure of voltage-sensitive VDAC isoforms in 
MOM (Fig. 9.5d). In other words, the fraction of VDAC3 isoform, having very low 
voltage sensitivity, might be considered as an “emergency exit-entrance” factor, pre-
venting complete electrical suppression of mitochondrial MOM permeability 
caused by high OMPs due to the closure of VDAC1 and VDAC2. The small fraction 
of constitutively open VDAC3 isoform in MOM would still allow the influx of 
respiratory substrates into the mitochondria and the return of Pi

− to recover ATP in 
mitochondria even at high OMP. The effect similar to a VDAC3 knockdown might 
also be caused by a disulfide group formation, leading to inhibition of the VDAC3 
conductance (Okazaki et al. 2015; De Pinto et al. 2016). This demonstrates the pos-
sibility of additional, redox-signaling potentiation of OMP generation and of elec-
trical regulation of MOM permeability to charged metabolites and even of electrical 
suppression of mitochondria by oxidative stress.

It has been demonstrated that the treatment of HepG2 cells with colchicine and 
nocodazole, microtubule destabilizers increasing the concentration of free cytosolic 
tubulin, caused a decrease in TMRM fluorescence by 60% and 70%, respectively 
(Maldonado et al. 2010, Fig. 9.3), that according to Eq. 9.19 might result from an 
increase in OMP by 24–32 mV, due to, for example, a decrease in the parameter Gc 
(Fig. 9.4e in comparison to Fig. 9.4a) and/or an increase in the parameter S (Fig. 9.4c 
in comparison to Fig. 9.4a) by free tubulin, as the modulator of the VDAC’s voltage- 
gating properties (Rostovtseva et al. 2008; Rostovtseva and Bezrukov 2008, 2012, 
2015; Maldonado et al. 2013). On the other hand, cell treatment with the microtubule 
stabilizer paclitaxel, known to decrease cellular free tubulin, increased TMRM fluo-
rescence by nearly 65% (Maldonado et al. 2010, Fig. 9.3) that could be interpreted 
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as a consequence of a decrease of the positive OMP by 13 mV (Eq. 9.19). The total 
range of 37–45 mV for possible tubulin-mediated modulation of OMP in HepG2 
cancer cells, estimated on the basis of the reported experimental data (Maldonado 
et al. 2010), is in a good agreement with the results predicted by the VDAC-HK 
model (Figs. 9.4a, c, f and 9.5a, e). This analysis demonstrates that OMP should be 
considered at least as a possible additional factor influencing the mitochondrial 
TMRM fluorescence changes reported by Maldonado et al. (2010, 2013).

The treatment of HepG2 cells with erastin, a compound hypothesized to target 
VDACs (Yagoda et al. 2007), thus disrupting the tubulin-dependent inhibition of 
VDAC conductance, antagonizing Warburg-type metabolism (Maldonado et  al. 
2013) and preventing formation of VDAC-HK complexes (see Lemeshko 2014a), 
has been demonstrated to increase the mitochondrial TMRM fluorescence by 46% 
(Maldonado et  al. 2013; DeHart et  al. 2014). According to Eq.  9.19, this corre-
sponds to a possible decrease in OMP by 10 mV. The effect of such magnitude is 
predicted by the VDAC-HK model, if we assume a decrease in the percentage of 
VDAC-HK complexes from 4% to 2% at [Gluc]c/[G6P]c = 10, or from 3.5% to 2% 
at [Gluc]c/[G6P]c = 100) (Fig. 9.5a). An even more significant effect on OMP might 
be expected (Fig. 9.5a, e) assuming that erastin decreases the binding of free tubulin 
to voltage-sensitive VDACs, thus leading to an increase in the parameter Gc and to 
a decrease in the parameter S.

The VDAC-HK model predicts that tubulin and/or HK binding to voltage- 
sensitive unbound VDACs favors OMP generation, thus increasing the electrical 
suppression of mitochondria in the cells with the Warburg-type metabolism, as it 
has been suggested earlier (Lemeshko 2002, 2014a, 2015). The performed estima-
tions indicate that the changes in TMRM fluorescence of cancer cells, caused by 
various cell treatments, known to influence the voltage-gating properties of VDACs 
and/or formation of VDAC-HK complexes, might reflect a contribution from 
 generated OMP (Eq. 9.18) in addition to IMP changes, suggested by various authors 
(Vander Heiden et  al. 1999; Maldonado et  al. 2010, 2013; Sheldon et  al. 2011; 
Gerencser et al. 2012; Zhang et al. 2016). In this respect, our model predicts that 
factors preventing formation of VDAC-HK complexes might cause an anti-Warburg 
effect by decreasing the probability of the glucose-dependent generation of positive 
OMP and thus of electrical suppression of mitochondria (Lemeshko 2014a, 2015). 
In addition, the lowered capacity to decrease the Ca2+ concentration in MIMS at low 
positive OMP might significantly decrease the cell death resistance to factors caus-
ing an increase in the cytosolic concentration of Ca2+ and leading to mitochondrial 
permeability transition, as discussed earlier (Lemeshko 2014a, 2016).

The models based on the bi-transmembrane transfer of phosphoryl groups through 
the ANT-VDAC (Fig. 9.2b) and ANT-CK-VDAC (Fig. 9.2c) electrogenic complexes 
demonstrated the possibility of generation of both positive and negative OMPs. The 
generated OMP depends on the ATP and CrP phosphorylation potentials in the cyto-
sol with respect to the ATP phosphorylation potential of mitochondria (Figs. 9.6 and 
9.7, respectively). Interestingly, thermodynamic estimations demonstrated very simi-
lar results for both ANT-VDAC and ANT-CK-VDAC models (Figs. 9.6, 9.7, and 9.8, 
respectively), apparently questioning the physiological importance of the CK system 
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for mitochondria-cytosol energy channeling in cells with high and fluctuating energy 
demands. Nevertheless, note that both calculations were performed for the cytosolic 
ratios [ATP]/[ADP] and [CrP]/[Cr] in the immediate proximity to MOM.

The general principles for ANT-VDAC- and ANT-CK-VDAC-mediated generation 
of OMP are presented in Fig. 9.10a–d, e–h, respectively. Let us assume first that the 
internal space of a bi-membrane structure contains adenine nucleotides at the ratio 
[ATP]m/[ADP]m = 3, as in the mitochondrial matrix (Fig. 9.10a, e), and the inner and 
outer membranes are impermeable to ions. At the electrochemical equilibrium, the bi-
transmembrane potential of −100 mV, for example, will be generated by the bi-trans-
membrane ANT-VDAC contact sites at the external ratio [ATP]/[ADP] = 125 (Fig. 9.10a) 
or by the ANT-CK-VDAC contact sites at the ratio [CrP]/[Cr] = 0.9 (Fig. 9.10e).

Fig. 9.10 Main principles of ANT-VDAC- (a–d) and ANT-CK-VDAC-dependent (e–h) genera-
tion of positive OMP. a, e bi-transmembrane potential is generated by the electrogenic ANT-VDAC 
contact sites in a hypothetical bi-liposomal structure at the fixed internal ratio [ATP]/[ADP] = 3 
and the external ratio [ATP]/[ADP] = 125 (a), or by the electrogenic ANT-CK-VDAC contact sites 
at the external ratio [CrP[/[Cr] = 0.9 (e). b, f OMP of +40 mV is generated at the thermodynamic 
equilibrium if a fixed internal membrane potential of −140 mV is generated by an electron trans-
port chain. A decrease in OMP is expected at starting the Pi

− circulation through unbound VDACs 
and the phosphoryl group transfer through the ANT-VDAC (c) and ANT-CK-VDAC (g) electro-
genic contact sites coupled to energy use in the external space. d, h The equivalent electrical cir-
cuits of b, f, respectively, where Ee, Ea, and Ec are the batteries corresponding to an electron 
transport system (Ee), ANT-VDAC (Ea) and ANT-CK-VDAC (Ec) contact sites. Co-MOM as an 
electrolytic capacitor (d, h) resulting of charge separation (K+, Cl−) in an electric field of equilib-
rium state OMP (b, f) or steady-state OMP (c, g)
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Now, let us assume that the inner membrane contains an electron transport chain 
pumping protons through the inner membrane, thus maintaining the membrane 
potential at −140 mV (Fig. 9.10b, f). As a result, the outer membrane potential of 
+40 mV will be maintained, although the outer membrane is highly permeable to 
small ions due to the presence of VDAC. The OMP will be maintained, because the 
flow of small ions will cease after achieving the electrochemical equilibrium for 
these ions, at fixed [ATP]/[ADP] = 125 (Fig. 9.10b) or [CrP]/[Cr] = 0.9 (Fig. 9.10f). 
In this case, the outer membrane may be considered as an electrolytic capacitor 
charged to the voltage of +40 mV. This simplest explanation of OMP generation 
(Fig. 9.10b, f) is demonstrated with two batteries connected as shown in Fig. 9.10d, 
h, respectively, where the voltage difference of the batteries Ee and Ea (Fig. 9.10d), 
or of the batteries Ee, and Ec (Fig. 9.10h), is applied to the electrolytic capacitor, 
without a current through it after its charging is finished.

Next, let us assume ATP hydrolysis (Fig. 9.10c) and CrP hydrolysis (Fig. 9.10g) 
in the external space with a rate that is equal to the rate of ATP recovery in the inter-
nal space of a bi-membrane structure coupled to the protonic electrochemical poten-
tial of the inner membrane, accompanied with the return of Pi

1− into the internal 
space, as shown in more detail in Fig. 9.2c, g. The outer membrane potential at such 
steady state will be less than +40 mV, and will depend on the percentage of free, 
unbound VDACs, on their voltage-gating properties and on steady-state ratios 
[ATP]/[ADP] (Fig.  9.10c) and [CrP]/[Cr] (Fig.  9.10g). We have to note that the 
thermodynamic analysis was performed here without taking into account the pos-
sible restriction of electro-diffusion/diffusion of ATP, ADP, CrP, and Cr in the 
cytosol.

Our data demonstrate similar results for a very low cytosolic concentration of 
ADP, two orders of magnitude less than the concentrations of ATP (Fig. 9.10a–c) 
and for a relatively high concentration of electrically neutral Cr, comparable with 
that of CrP (Fig. 9.10e–h). We have to highlight that the [ATP]/[ADP] ratios near 
the mitochondria under physiological conditions might be very different from those 
in the cytosolic sites of ATP hydrolysis, especially in spermatozoids, due to a restric-
tion of ADP3− electro-diffusion (Wallimann et al. 2011; Simson et al. 2016), which 
is at least three orders of magnitudes less than the rate of Cr diffusion (Wallimann 
et  al. 2011 and references therein). Thus, the mitochondrial-cytosolic CK kinase 
system is very important for cells with high and fluctuating energy demands, func-
tioning not only as the cytosol energy buffer (Schlattner et al. 2006; Wallimann et al. 
2011; Wallimann 2015; Guzun et al. 2015) but also as a system allowing the fast 
recovery of the cytosolic CrP phosphorylation potential by mitochondria (Wallimann 
2015). As we showed (Lemeshko 2016), this mitochondria-cytosol CrP flux may be 
controlled by an electrical signaling system of MOM coupled to the generation of 
the metabolically dependent OMP (Figs. 9.7 and 9.8).

Recently we have explained the protective effects of creatine against mito-
chondrial permeability transition (Lemeshko 2016), induced by an elevated con-
centration of Ca2+ in the cytosol, as a result of pushing out of Ca2+ ions from 
MIMS by positive OMP, directly generated by the CK-VDAC electrogenic com-
plexes of MOM, or by the ANT-CK-VDAC complexes coupled to IMP (Fig. 9.2c). 
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In addition, even the generation of positive OMP that is not yet high enough to 
essentially inhibit MOM permeability to ADP might contribute in a decrease of 
Km,ADP for mitochondrial state 3 respiration in the presence of creatine (Lemeshko 
2016) by more than one order of magnitude (Saks et al. 2010; Guzun et al. 2015). 
Thus, even OMP of relatively small values, not yet sufficient to close VDACs, 
might influence steady-state concentrations of charged metabolites and inorganic 
ions in MIMS, such as ADP3− and Ca2+, thus modulating the mitochondrial meta-
bolic state, cell energetics, and cell death resistance.

9.5  Conclusions

Up to now, the main concept of the MOM permeability regulation has been the 
“molecular corking up” of MOM’s porins, although there is a high probability that 
the mechanism controlling cell energy metabolism is a combination of electrical 
and “corking up” components, when relatively high OMP is generated as an electri-
cal feedback control of the energy flux between mitochondria and the cytosol. In 
addition to the natural modulators of VDAC’s voltage-gating properties, like tubulin 
(Rostovtseva et al. 2008; Maldonado et al. 2013; Rostovtseva and Bezrukov 2015), 
synuclein (Rostovtseva et al. 2015) and other allosteric factors, this combined regu-
lation might be also supplemented with the redox-dependent modulation of VDAC 
conductance and with other chemical modifications of various VDAC isoforms. In 
general, the combined VDAC electrical and “molecular corking up” regulation of 
the MOM permeability to charged metabolites seem to represent a novel physiolog-
ical mechanism of coordination of mitochondrial and cytosolic energy metabolism, 
thus playing a crucial role in cell energy homeostasis. The real values of the meta-
bolically derived OMP may not be as high as calculated for the models described 
here because the voltage-gating properties of VDACs under natural conditions 
might be different from those known from the studies of VDACs in lipid bilayers 
and also because the rates of phosphoryl group transfer through the VDAC-HK 
complexes and through the bi-transmembrane ANT-VDAC and ANT-CK-VDAC 
contact sites depend on local concentrations of corresponding metabolites. All these 
require further theoretical and experimental studies. On the other hand, even the 
simplest thermodynamic estimations demonstrate that the generated metabolically 
dependent OMP may be high enough to control cell energy metabolism at the level 
of MOM, representing a fast electrical signaling system to control VDAC’s conduc-
tance, especially if combined with the “molecular corking up,” redox signaling, and 
other mechanisms of modulation of the VDAC’s voltage-gating properties.
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Chapter 10
New Insights on the Regulation 
of Programmed Cell Death by Bcl-2 Family 
Proteins at the Mitochondria: Physiological 
and Pathophysiological Implications

Laurent Dejean and Stéphen Manon

10.1  Introduction

Since the first description, in 1972, that cell death spontaneously occurred in 
otherwise healthy tissues (Kerr et al. 1972), apoptosis has grown as one of the 
most exciting fields of modern cell biology. Biology is defined as the science of 
life, and it is rather fascinating that so much efforts are made by investigators 
around the world to understand how a beautifully organized cell is returning to 
the inanimate. Beyond our obvious interest to understand the mechanistic and 
regulatory aspects of a process that is crucial for major health-related issues (such 
as embryonic development, cancer, and neurodegenerative diseases), the study of 
apoptosis is a constant reminder to us that nothing is eternal. Scientist or not, 
every human being wants to understand death, and our differences in perceiving 
this concept have inspired the most remarkable artistic works, as well as the ugli-
est wars. For us, biologists, this is not so much the concept of cell death that is 
fascinating, since we know too well that life is dependent on such a fragile equi-
librium and that death is the “normal” status while life is the “exceptional” one. 
Our fascination might come from the concept of programmed cell death that life 
evolution, in all its complexity, has also included death evolution. A bacterium 
does not die like a mammalian neuron, for instance, and this mammalian neuron 
does not die like a mammalian lymphocyte. All of this is obviously without con-
sidering the (somewhat exaggerated) concept of immortal cancer cell; cells which 
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are halfway between the dream of eternal life and the nightmare of uncontrolled 
proliferation incompatible with the maintenance of organismal structural integ-
rity. Underlying these somewhat epistemological considerations exist molecular 
mechanisms, which investigators have begun to understand in the 1980s and 
1990s from two perspectives: (i) that of development, with studies using the nem-
atode Caenorhabditis elegans as model (Ellis and Horvitz 1986), and (ii) that of 
cancer research, with a special focus on mammalian/human Bcl-2 family proteins 
(Tsujimoto et al. 1984). It turns out that these two fields met each other, when it 
was found that the worm protein ced-9 was a Bcl-2 family member (Hengartner 
and Horvitz 1994). An additional degree of excitement was reached in these stud-
ies when it was found that the function(s) of Bcl-2 family members had some-
thing to do with mitochondria (Hockenbery et al. 1993; Zamzami et al. 1995), 
organelles which, as cellular energy converters, symbolize the power of life.

In this chapter, we will review several recent advances on the study of the molec-
ular links between Bcl-2 family members and mitochondria. Specifically, we will 
emphasize on the molecular aspects underlying these links and show that some 
concepts which are commonly accepted nowadays are bound to be reevaluated. It is 
worth noting that if mitochondria have for long been considered as “passive” play-
ers in apoptosis, it is now considered that their function in bioenergetic metabolism 
is playing an important part in the apoptotic response. This recent knowledge may 
provide new means to manipulate apoptosis in pathological situations and proves 
itself useful in the development of new therapeutics against cancer and/or neurode-
generative diseases.

10.2  Presentation of Structure-Function Features of Bcl-2 
Family Proteins

10.2.1   Characteristics of Bcl-2 Family Members

Bcl-2 was first identified in 1984 as an oncogenic protein that was overexpressed in 
B-cell lymphomas (Tsujimoto et al. 1984). Sequence analyzes later indicated that Bcl-2 
was the first discovered member of a large family of proteins that play a major role in the 
regulation of cell death, most specifically – but not exclusively – by regulating apopto-
sis. As such, the molecular mechanisms underlying their function have been the subject 
of intense scrutiny. Indeed, alterations of their function are involved in major cancer-
related issues such as tumorigenesis or chemoresistance, and targeting these proteins is 
a promising approach for cancer therapy (Czabotar et al. 2014; Kvansakul and Hinds 
2015). Bcl-2 family members are present in the whole animal reign: the Caenorhabditis 
elegans protein Ced9 is a Bcl-2 family member (Hengartner and Horvitz 1994). Bcl-2 
family members have actually been found in all vertebrates, including zebrafish (Arnaud 
et al. 2006; Chen et al. 2000; Kratz et al. 2006), and in invertebrates, such as Drosophila 
(Colussi et al. 2000; Quinn et al. 2003). A summary of the main structural features of 
Bcl-2 family proteins is presented below and summarized in Fig. 10.1.
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Bcl-2 family members have been once characterized by the presence of Bcl-2- 
homology (BH) domains (Kelekar and Thompson 1998). Structural data later 
showed that homologies in the primary structure were associated to homologies in 
the tertiary structure. Indeed, anti-apoptotic proteins Bcl-2 (Petros et al. 2001) and 
Bcl-xL (Muchmore et al. 1996) and pro-apoptotic proteins Bax (Suzuki et al. 2000), 
Bak (Moldoveanu et al. 2006), and Bid (Chou et al. 1999) all shared common struc-
tural features (Petros et al. 2004).

Besides these proteins that can be considered as “strict” Bcl-2 homologs, other 
proteins only having the BH3 domain have been identified, namely, Bad (Yang et al. 
1995), Bim (O’Connor et al. 1998), and Puma (Yu et al. 2001). It should be noted 
that Bid, although sharing the global structure of Bcl-2 family members, has been 
classified for long as a BH3-only protein, since it does not have obvious BH1 and 
BH2 domains. All these proteins, termed “BH3-only proteins,” interact with Bcl-2 
family members, because of the ability of their BH3 domain to interact with the 
BH1/BH2 domains of anti-apoptotic proteins, thus preventing the interaction 
between anti-apoptotic and pro-apoptotic proteins (Kelekar and Thompson 1998). 
Other “non-strict Bcl-2 homologs” containing a BH3 domain have been found in 
mammals [e.g., the pro-autophagic proteins Beclin-1 (Oberstein et  al. 2007) and 
Nix (Farooq et al. 2001)], but also in organisms from other life domains (e.g., the 
yeast protein Bxi1/Ybh3 (Buttner et al. 2011; Cebulski et al. 2011)). Phylogenetic 
studies suggest that the presence of BH3-like domains in these proteins might be the 
result of convergent evolution instead of the evolution from a common ancestor 
(Aouacheria et al. 2013). This suggests that genuine Bcl-2 family members are lim-
ited to the animal reign. However, under certain conditions, these noncanonical 
BH3-containing proteins can regulate genuine Bcl-2 family members, e.g., between 
Beclin-1 and Bcl-2 (Liang et al. 1999). Thus, these studies led to the proposal of an 
alternative phylogenetic classification of these proteins (Fig. 10.1).

10.2.2   Different Roles of Bcl-2 Family Members in Apoptosis

Multi-domain pro-apoptotic proteins, such as Bax and Bak, are the central effectors 
of cell death. They are the direct effectors of the permeabilization of the outer mito-
chondrial membrane. Although defects on Bax/Bak have rarely been identified in a 
tumor context, stimulating their activity (Gavathiotis et al. 2012) and mimicking 
their action (Valero et  al. 2011) are feasible alternatives to increase the death of 
cancer cells. The mechanistic aspects of the permeabilization process will be 
detailed below.

Anti-apoptotic proteins Bcl-2 and Bcl-xL inhibit apoptosis through a physical 
interaction with pro-apoptotic proteins. Early studies supported the view that the 
formation of complexes between anti-apoptotic proteins Bcl-2/Bcl-xL and pro- 
apoptotic protein Bax favored the cytosolic retention of Bax, thus preventing its 
mitochondrial localization and/or activation. When Bcl-2/Bcl-xL are overexpressed, 
they therefore cause the resistance of tumor cells to signals or to chemotherapy that 
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Fig. 10.1 Classifications of Bcl-2 family members. (Top) Classical classification based on struc-
ture/function studies. Bcl-2 family members were characterized by the presence of BH domains 
and sub-characterized by their function. Anti-apoptotic proteins contain a hydrophobic groove 
that can interact with BH3 domains of pro-apoptotic proteins. Multi-domain pro-apoptotic pro-
teins share structural features with anti-apoptotic proteins. They can organize as a large-sized pore 
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lead to cell death (Adams and Cory 2007). They might also help the survival of 
cancer cells through other mechanisms such as regulation of autophagy (Pattingre 
et al. 2005; Maiuri et al. 2007; Priault et al. 2010).

As noted above, BH3-only proteins form a heterogeneous group of proteins that 
only share the BH3 domain of homology with Bcl-2 family members. Although 
they are mostly pro-apoptotic, they display different functions in the process. Some 
of them, like Bad, are acting by breaking the interaction between pro- and anti- 
apoptotic proteins. They are then called “derepressors.” Others, like tBid, are mostly, 
if not exclusively, “activators” of multi-domain pro-apoptotic proteins. A third 
group, including Bim or Puma, may have both functions, depending on the cellular 
context. These proteins have emerged as suitable templates to design molecules able 
to trigger apoptosis in cancer cells (Delbridge and Strasser 2015).

10.2.3   Structure-Function Studies of Bcl-2 Family Members

Since most cells are able to express the vast majority of Bcl-2 family members, the 
mitochondrial outer membrane permeabilization (MOMP) leading to cytochrome c 
release during apoptosis is regulated by a complex network of interactions (Renault 
et al. 2012; Willis et al. 2007 for review).

It has been early established that homology domains BH1, BH2, and BH3 are 
mainly responsible for these interactions. Site-directed mutagenesis of the BH3 
domain of Bax (Zha et al. 1996a) or the BH1 domain of Bcl-2/Bcl-xL (Sedlak et al. 
1995; Yin et al. 1994) is sufficient to prevent the interactions between pro- and anti- 
apoptotic proteins. Similarly, mutations of the BH3 domain of BH3-only proteins 
prevent their interaction with anti-apoptotic proteins. It is noteworthy that the bind-
ing affinities of Bcl-2 and Bcl-xL for the BH3 domains of different proteins may 
differ significantly (Chen et al. 2005). Even though the conclusion of the experi-
ments done with isolated BH3 domains should be extrapolated to the whole proteins 
with caution, the BH3 domain of Bak has successfully served as a model to design 
ABT-737, a very specific and high-affinity inhibitor of anti-apoptotic proteins Bcl-2 
and Bcl-xL (Oltersdorf et al. 2005). Further studies have since allowed to refine the 

Fig. 10.1 (continued) responsible for mitochondria permeabilization. BH3-only proteins can 
interact with anti-apoptotic proteins, inhibiting them (Bad, Noxa), or with pro-antiapoptotic pro-
teins, activating them (tBid, Bim, Puma). A part from the BH3 domain, they do not share structural 
features with anti- or pro- apoptotic proteins, with the exception of Bid. (Bottom) Anti-apoptotic 
and pro-apoptotic proteins, including Bid, have been generated from gene duplication and diver-
gent evolution, and all together form a group of Bcl-2 homologs. The canonical BH3 domain is a 
protein-protein interaction domain than can be found in these Bcl-2 homologs and in other proteins 
that regulate their function. Closely resembling noncanonical BH3 domains can be found in a large 
number of proteins making them potentially able to modulate the activity of Bcl-2 homologs. It is 
unlikely that these noncanonical domains there generated through duplication of the canonical 
BH3 domain: as a matter of fact, they are also present in organisms where the canonical domain is 
absent (Figure from Renault et al. 2016)
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process by designing ABT-199 that is highly specific to Bcl-2 but not to Bcl-xL 
(Souers et  al. 2013). Conversely, other studies have permitted to design Bcl-xL- 
selective inhibitors, such as WEHI-539 (Lessene et al. 2013).

As already noted, both anti- and pro-apoptotic Bcl-2 family members share sev-
eral common structural features, beyond the homology domains. One of them is the 
presence of a C-terminal hydrophobic α-helix, long enough to form a membrane 
anchor (Kelekar and Thompson 1998; Garcia-saez et al. 2004). It has been unam-
biguously demonstrated that the removal of this C-terminal domain prevented both 
in vitro and in vivo membrane localization of both Bcl-2 and Bcl-xL (Kaufmann 
et al. 2003). As a matter of fact, this domain alone can spontaneously insert into 
membranes (Del Mar Martinez-Senac et  al. 2000). Interestingly, the C-terminal 
domain of Bcl-xL was sufficient to promote the mitochondrial localization of Bax 
deprived of its own C-terminus, in vitro (Tremblais et al. 1999), in mammalian cells 
(Oliver et al. 2000), or following its heterologous expression in yeast.

Conversely, it was and is still unclear if the C-terminal hydrophobic α-helix of 
Bax is involved in its anchoring into the outer mitochondrial membrane. The 
removal of this domain leads to contradictory results on its localization both in vitro 
and in vivo. The domain alone is not able to anchor a reporter protein, unless the 
Ser184 residue is deleted or substituted by a Val residue (Suzuki et al. 2000). It is 
not able to restore the mitochondrial localization of Bcl-xL deprived of its own 
C-terminal domain (Tremblais et al. 1999).

A series of experiments have suggested that the mitochondrial receptor translo-
case of outer mitochondrial membrane 22 (TOMM22) helped the mitochondrial 
localization of Bax (Bellot et al. 2007). However, the absence of TOMM22 did not 
affect the mitochondrial localization of Bax carrying a deletion (Cartron et al. 2008) 
or a substitution (Ross et al. 2009) of Ser184. By using the heterologous expression 
of Bax in yeast, it has been observed that the overexpression of the cytosolic domain 
of human TOMM22 could interfere with Bax interaction with mitochondria: it 
increased Bax mitochondrial localization, but decreased its ability to permeabilize 
the outer mitochondrial membrane (Renault et al. 2012), suggesting that Bax was 
relocalized under a poorly active conformation.

Even though the C-terminal α-helix of Bax is not a genuine membrane anchor, 
like its counterparts in Bcl-2 and Bcl-xL, mutations that are expected to move it 
away from the core of the protein are activating Bax. The introduction of a negative 
charge in position 174 (Thr174>Asp), facing a negative charge in position 69 
(glu69), is sufficient to promote a high mitochondrial localization (Arokium et al. 
2004). Also, favoring the movement of the domain by substituting the proline resi-
due located in the loop between α8 and α9 helices (Pro168>Ala, Val, or Gly) was 
found to strongly increase the mitochondrial localization of Bax in several biologi-
cal models (Arokium et al. 2004; Cartron et al. 2005) but not in a universal fashion 
(Schinzel et al. 2004). The consequences of these substitutions may likely depend on 
other factors modulating Bax conformation. Indeed, the stimulating effect of a sub-
stitution Pro168>Ala was abolished by a substitution Ser60>Ala, but further restored 
by a substitution Ser163>Asp (Arokium et al. 2007) suggesting that conformational 
changes in several different domains of Bax may participate to its full activation.
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10.2.4   Relationship Between Bax Structure 
and Permeabilization of the Outer Mitochondrial 
Membrane

As already mentioned, the canonical pathway of Bax-mediated mitochondrial per-
meabilization depends on several conformational changes of the protein leading 
sequentially to its translocation, insertion, and oligomerization in the outer mem-
brane; the last of these steps being the cause of MOMP and cytochrome c release 
(Fig. 10.2a). Following the first structural data on Bcl-2 family members, a parallel 
has been drawn between the presence of two amphipathic α-helices (α5–α6) form-
ing a hairpin structure, with those found in several bacterial toxins known to form 
pores in membranes (Minn et al. 1997). When added to artificial membranes, Bcl-
2, Bcl-xL, and Bax could form low-conductance channels (several tenths of pS) 
(Minn et  al. 1997; Schendel et  al. 1997; Schlesinger et  al. 1997). However, the 
extrapolated size of the pores of these putative channels was too small to explain 
neither the release of large molecules such as cytochrome c observed in apoptotic 
cells or to constitute a mechanistic basis of the antagonistic function of anti- and 
pro-apoptotic proteins. It was next demonstrated that, under certain conditions and, 
namely, in the presence of tBid, Bax (but not Bcl-2 and Bcl-xL) was able to per-
meabilize mitochondria to cytochrome c (Desagher et al. 1999). Electrophysiological 
studies showed that this membrane permeabilization was associated with the for-
mation of a large-conductance pore (Pavlov et al. 2001) containing Bax oligomers 
(Dejean et  al. 2005). Recent progresses in imaging techniques have allowed to 
show that Bax could indeed form large pore-like structures both in artificial mem-
branes and in the mitochondrial outer membrane (Grosse et  al. 2016; Salvador-
Gallego et al. 2016).

Although some alternative models, such as the Bax-induced activation of the 
so- called mitochondrial permeability transition pore (mPTP), have been popular 
for some time (Marzo et al. 1998) and might still be involved in other death pro-
cesses such as necrosis (Baines et al. 2005; Nakagawa et al. 2005), it is now read-
ily established that Bax can genuinely form a pore in the outer mitochondrial 
membrane which is large enough to allow the release of, at least, cytochrome c. 
The remaining question however was how a globally hydrophilic and globular 
protein such as Bax is able to reorganize itself as a large membrane-inserted pore. 
Recent structural and structure/function studies have allowed to partially answer 
this crucial question.

The structure of soluble, supposedly inactive, Bax has been determined by NMR 
in 2000 (Suzuki et al. 2000). At this date, most data described above had yet to be 
obtained. This structure has been a template to study which domains/residues of 
Bax were of interest for structure/function studies. However, it was not sufficient to 
predict the structure of the fully active/membrane-associated protein. Worthy infor-
mation has been obtained from the structure of antibodies directed against the 
N-terminal domain of Bax (Peyerl et al. 2007). This domain, corresponding to the 
residues 3–16 of human Bax, is highly immunogenic and has been used to generate 
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Fig. 10.2 Bax signaling pathway leading to MOMP in cells which are normal or primed for death. 
(a) Induction of apoptosis results in Bax translocation and change of conformation (pre-activa-
tion) at the mitochondrial outer membrane (MOM) (white rectangle). During this step, Bax dock-
ing may be favored by its interaction with native MOM protein such as TOMM22 (labeled “?”). 
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both polyclonal and monoclonal antibodies. One monoclonal antibody, 6A7, was 
found to selectively recognize the active form of Bax, opposite to another antibody, 
2D2, that recognizes all Bax conformations (Hsu and Youle 1998). The differences 
in the structures of the recognition sites of 2D2 and 6A7 showed that part of the 
domain supported a large amplitude movement between the two conformations 
(Peyerl et al. 2007).

A breakthrough advance has been done when the structure of Bax activated by 
a BH3 domain has been resolved by X-ray diffraction of crystals (Czabotar et al. 
2013). It should be noted, however, that, for technical reasons, the authors used a 
version of Bax deprived of the C-terminal hydrophobic domain, making the ques-
tions about the actual role of this domain (see above) still relevant. This structure 
revealed a symmetrical Bax dimer. Opposite to what had been postulated before, 
the amphipathic helices α5–α6 were not organized as hairpins, like in the inactive 
monomer, but were unfolded to form a head-to-tail interface between the two 
monomers. This led to the hypothesis that, instead of being inserted in the mem-
brane, α5–α6 laid flat at the surface of the membrane. This hypothesis was further 
supported by experiments of residue accessibility (Westphal et al. 2014). Models 
were then proposed to explain how these Bax dimers could further self-organize 
as oligomers (Bleicken et al. 2014; Subburaj et al. 2015). It is noteworthy that 
such a self- organization is fully compatible with experiments showing that once 
several Bax molecules are inserted in the outer mitochondrial membrane, they 
can serve as “receptors” for additional Bax molecules (Cartron et al. 2008). This 
self-organizing model is also compatible with experiments showing that the lipid 
composition, more specifically the presence of ceramides and cardiolipin (Zhang 
and Saghatelian 2013 for a review), membrane curvature (Renault et al. 2015a), 
and the overall mitochondrial cristae structure (Yamaguchi et al. 2008) are crucial 
factors for Bax- induced permeabilization. Indeed, this model requires Bax oligo-
mers to be able to reorganize lipids around them to form large-sized pores 
(Bleicken et al. 2014).

Fig. 10.2 (continued) Induction of apoptosis also increases the expression and translocation of 
BH3-only proteins at the MOM which trigger Bax insertion and oligomerization. These Bax oligo-
mers are essential components of the MOMP machinery. MOMP allows the release of cytochrome 
c (red) from the intermembrane space to the cytosol, ultimately leading to cell death. Bcl-2/xL 
inhibits cytochrome c release and physical interactions between anti-apoptotic Bcl-2 family mem-
bers are required to inhibit MOMP (b) Left, Upon IL-3 withdrawal, Bim catalyzes the activation of 
loosely bound Bax into a functional MOMP machinery leading to the release of cytochrome c. 
Right, Bcl-2/xL overexpression leads to accumulation of activated Bax in the mitochondrial outer 
membrane (MOM) even in the absence of an apoptotic stimulus (i.e., prior to IL-3 withdrawal). 
Withdrawal of IL-3 induces accumulation of Bim-Bcl-2/xL complexes in the MOM, but the MOMP 
machinery is still in its precursor form and cytochrome c is not released (compare Left and Right 
side on the figure). Right, Bim is accumulated at the MOM in response to IL-3 withdrawal. Bcl-2/
xL overexpression leads to a mitochondrial accumulation of activated Bax present in noncompetent 
MOMP structure. ABT-737 addition leads to a release of the interaction between Bax and Bim and 
Bcl-2/Bcl-xL and therefore to a MOMP with higher intensity than in a normal context
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10.3  Linking Signaling Pathways to Bax-Dependent MOMP

Structural and structure/function studies described above have allowed to get a bet-
ter understanding about how a monomeric, globular, and soluble protein like Bax is 
able to be reorganized in a large-sized oligomer inserted in the membranes. We are 
now going to detail how this dramatic structural change might be connected to 
upstream death signaling pathways.

While protein phosphorylation is widely established as the major conveyor of 
short-term intracellular signaling, how phosphorylation could possibly regulate 
Bcl-2 family members function remains elusive. The first regulation by phosphory-
lation of a Bcl-2 family member has been shown on the BH3-only protein Bad (Zha 
et  al. 1996b). Bad strictly interacts with the anti-apoptotic proteins Bcl-2 and 
Bcl-xL, inhibiting their ability to interact with Bax. On the other hand, Bad does not 
directly interact with Bax, opposite to other BH3-only proteins such as Bim or 
Puma (Willis et al. 2007). In living cells, Bad is normally phosphorylated on two 
serine residues by the survival kinase protein kinase B (AKT) (Del Peso et al. 1997). 
When phosphorylated, Bad cannot interact with Bcl-2/Bcl-xL.  If the activity of 
AKT is decreased, Bad is less phosphorylated and can interact with Bcl-2/Bcl-xL, 
thus releasing the inhibition of Bax (Datta et al. 1997).

The BH3-only Bcl-2 homolog Bid is a major regulator of apoptosis. The pro-
tein is normally inactive but can be activated through a cleavage by caspase-8 (Luo 
et al. 1998). The active form of the protein, called tBid, has been shown to favor 
apoptosis in multiple ways; i.e., not only tBid directly favors Bax oligomerization 
(Desagher et al. 1999), but it also may cause mitochondrial structure rearrange-
ments which help the release of cytochrome c and other apoptogenic factors dur-
ing apoptosis (Kim et al. 2004). It was shown that Bid can be phosphorylated by 
casein kinases I and II, preventing its cleavage and thus activation, by caspase-8 
(Desagher et al. 2001).

Anti-apoptotic proteins can also be phosphorylated under certain conditions by 
different kinases, namely, c-Jun N-terminal kinase (JNK) (Maundrell et al. 1997), 
mitogen-activated protein kinases 1 and 2 (MAPK1/2) (Torcia et  al. 2001), and 
cyclin-dependent kinase 1 (CDK1) (Vantieghem et al. 2002). Multiple phosphoryla-
tion by JNK and MAPK1/MAPK2 has been shown to stabilize Bcl-2 and prevent its 
ubiquitin-dependent degradation (Breitschopf et al. 2000). On the other hand, the 
transient phosphorylation of both proteins by CDK1 has been shown to disable their 
anti-apoptotic activity (Terrano et al. 2010). Note however that these kinases have 
multiple targets in the death and survival signaling processes, a characteristic which 
does not allow to completely eliminate the possibility that the effects of the muta-
tions mentioned above may be indirect.

The phosphorylation of specific residues might be the basis of conformational 
changes underlying the activation of Bax, including its mitochondrial translocation 
and its oligomerization. Because of its potential role in regulating the conformation 
of the C-terminal helix α9, the putative phosphorylation of the Ser184 residue 
within this helix has been the focus of several studies. In this context, it has been 
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shown that Bax Ser184 can be phosphorylated by several kinases such as AKT 
(Gardai et al. 2004) and PKCζ (Xin et al. 2007). These protein kinases are involved 
in survival signaling pathways; it was therefore not surprising to find out that the 
phosphorylation of Ser184 was associated to a decrease of the mitochondrial trans-
location of Bax, both in mammalian cells (Gardai et al. 2004) and after heterologous 
expression in yeast (Simonyan et al. 2016). Conversely, the substitution of Ser184 
by a non-phosphorylatable residue (Ala or Val) has reproducibly been associated 
with a constitutive mitochondrial localization of Bax (Arokium et al. 2007; Gardai 
et  al. 2004). However, the consequences on Bax activity might not be so clear. 
Indeed, when expressed alone in the yeast model system, the mutant carrying a 
phosphomimetic substitution Ser184>Asp displayed a high capacity to release cyto-
chrome c in spite of its weak mitochondrial localization, while non- phosphorylatable 
substitutions Ser184>Ala or >Val exhibited relatively low activities in spite of high 
mitochondrial localizations (Simonyan et al. 2016). Besides, the phosphomimetic 
mutant was less resistant to proteases and more sensitive to the inhibition by Bcl-xL 
than the non-phosphorylatable mutants (Simonyan et al. 2016). This may indicate 
that phosphorylation of Ser184 very finely regulates Bax stability, membrane local-
ization, membrane permeabilization activity, and capacity to bind to anti-apoptotic 
partners.

An additional level of regulation of Bax activity might be provided by the phos-
phorylation of Ser163. This residue was shown to be phosphorylated by glycogen 
synthase kinase-3β (GSK3β); this phosphorylation event leads to an increase of 
Bax mitochondrial localization (Linseman et al. 2004), which was relevant to the 
role of this kinase in death signaling pathways (Forde and Dale 2007 for review). 
Remarkably, GSK3β is also known to inactivate AKT, through the phosphorylation 
of two of its core residues (Gold et  al. 2000 for review). GSK3β would conse-
quently be able to increase Bax mitochondrial relocalization through two mecha-
nisms: by directly phosphorylating Ser16, and by indirectly preventing the 
phosphorylation of Ser184. However, like for Ser184, the consequence(s) of the 
phosphorylation of Ser163 might not be so straightforward. Indeed, the phospho-
mimetic substitution Ser163>Asp is not sufficient to increase the mitochondrial 
localization; however, it dramatically increased the mitochondrial localization of 
Bax substituted on other residues (Arokium et al. 2007), suggesting that concerted 
conformational changes of different Bax domains might participate to its mito-
chondrial relocation. It is worth noting that GSK3β phosphorylates the first Ser/Thr 
residue in a sequence Ser/Thr-X-X-X-Ser/Thr if the second Ser or Thr residue is 
already phosphorylated (Jho et al. 1999). Bax has a Thr at position 167, and it has 
been shown that this residue can be phosphorylated by extracellular signal-regu-
lated kinases 1 and 2 (Erk1/2) and is close to the residue Pro168 (Schinzel et al. 
2004), which was shown to be crucial to maintain the position of helix α9 (Arokium 
et al. 2004; Cartron et al. 2005). Incremental phosphorylation and conformational 
changes of this part of the protein are therefore likely to initiate its mitochondrial 
relocation.

Other residues of Bax are susceptible to be phosphorylated, and other kinases 
might contribute to the regulation of Bax location and function. For example, during 
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anoikis, the 38 kDa mitogen-activated protein kinase (p38MAPK) has been shown 
to increase the mitochondrial localization of Bax without, however, fully activating 
it (Owens et al. 2009). Like for Bcl-2 and Bcl-xL, the phosphorylation of Bax could 
simply stabilize the protein, like it has been shown in yeast when Bax is phosphory-
lated by the protein kinase C alpha (PKCα) (Silva et al. 2011).

These observations, which have been made in different cellular models, might 
obviously not be extrapolated to every biological system. The more intricate is a 
regulation, the more likely it is to be specific of the model in which it is observed. 
However, the molecular mechanisms underlying these regulations, such as the fact 
that the phosphorylation of Ser184 might help to move helix α9 away from the core 
of the protein, are intrinsically present. In the next paragraph, we will summarize 
reports demonstrating that the regulation of Bax relocation and activation is more 
dynamic than what was previously proposed.

10.4  Regulation of Bax Mitochondrial Location by BH3- 
Only and Multi-domain Anti-apoptotic Bcl-2 Family 
Proteins

10.4.1   BH3-Only Proteins Favor Bax Translocation 
to Mitochondria

The BH3-only proteins are the sentinels that translate the survival and apoptotic sig-
nals emanating from throughout the cell. There are two functional classes of senti-
nels; they are direct activators or sensitizers (Fig. 10.1). Bid, Bim, and most probably 
Puma directly interact with the multi-domain pro-apoptotic Bax and Bak to cause a 
conformational change, which presumably triggers their oligomerization leading to 
MOMP (Luna-Vargas and Chipuk 2016; Sarosiek and Letai 2016). On the other end, 
Bad and Noxa are sensitizers which bind the hydrophobic pocket of the anti- apoptotic 
proteins like Bcl-2 to displace the normally sequestered direct activators, like Bim, or 
even possibly the pro-apoptotic effectors Bax and Bak (Luna-Vargas and Chipuk 
2016; Sarosiek and Letai 2016). The elevation in liberated pro-apoptotic proteins 
shifts the balance within the family toward apoptosis. Nevertheless, Bax and Bak 
presumably remain inert until a direct activator sentinel induces the conformational 
change that allows their oligomerization. Yet another layer of regulation exists within 
the BH3-only group. For example, Bad must be dephosphorylated while Bid needs to 
be cleaved in order to assume their sentinel status as sensitizers and direct activators, 
respectively (Luna-Vargas and Chipuk 2016).

During apoptosis, inactive Bid is cleaved to generate a C-terminal truncated form 
referred to as tBid, which functions as a direct activator. The fragment tBid triggers 
oligomerization of both Bax and Bak in the mitochondrial outer membrane which 
causes cytochrome c release (Desagher et al. 1999; Wei et al. 2001). Furthermore, 
tBid can trigger oligomerization of recombinant monomeric Bax in artificial 
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 membranes (Dejean et al. 2005; Roucou et al. 2002). The oligomerization results in 
formation of voltage independent and slightly cationic channels with conductances 
of 1.5–10 nS, which can be detected by patch clamp techniques (Dejean et al. 2005). 
Moreover, cytochrome c is transported through these tBid-induced Bax channels, 
which makes them very similar to the electrophysiological manifestation of MOMP, 
i.e., the mitochondrial apoptosis-induced channel or MAC (Dejean et al. 2005). We 
used tBid to induce MAC activity in mitochondria in order to visualize formation of 
the pore of MAC in real time (Martinez-Caballero et al. 2009). Nanomolar concen-
trations of tBid catalyzed MAC formation and cytochrome c release in a matter of 
minutes. Interestingly, the amount of tBid needed to form MAC and release cyto-
chrome c in mitochondria lacking Bax and/or Bak was different. MAC formed from 
Bak with an EC50 of about 20 nM tBid; but MAC needed >200 nM tBid to be formed 
from Bax. It is however possible that the requirement of less tBid to induce MAC 
was due to an increase of Bak expression levels in the Bax −/− KO cells used during 
this study (Martinez-Caballero et al. 2009). As expected, MAC did not form in mito-
chondria lacking both Bax and Bak. Quantitative analysis of the stepwise changes 
in conductance associated with tBid-induced MAC formation was consistent with 
pore assembly by a barrel-stave model. Assuming the stave is composed of two 
transmembrane α-helices in Bax and Bak, mature MAC pores would typically con-
tain ~9 monomers and have diameters of 5.5–6 nm (Martinez-Caballero et al. 2009).

10.4.2   Bax Retrotranslocation from Mitochondria 
to the Cytosol

For long, it had been considered that Bax translocation from the cytosol to the mito-
chondria was a “one-way” process. This came from the observation that, in non- 
apoptotic cells, Bax localization is essentially diffuse in the cytosol while, following 
an apoptotic signal, it gets relocated to mitochondria (Wolter et al. 1997) and forms 
membrane-inserted oligomers that are responsible for MOMP.  Since this process 
involves major conformational changes (Peyerl et al. 2007; Suzuki et al. 2000), it was 
hardly conceivable that these oligomers could be disassembled and that Bax could go 
back to its previously inactive state in the cytosol. However, significant observations 
suggested that the passage from soluble/monomeric Bax to membrane- inserted/
oligomeric Bax is not a one-step process. For example, it has been shown that, during 
anoikis, Bax could be relocalized to mitochondria, but that the process was reversible 
(Owens et al. 2009). This, and other experiments, demonstrated that “mitochondrial 
Bax” was not obligatorily “membrane-inserted” Bax (Renault et al. 2013).

Structural studies have allowed designing a complex Bax mutant that has a con-
stitutive mitochondrial localization but that cannot support the conformational 
change associated with the oligomerization, thus remaining incompetent for cyto-
chrome c release. Under oxidative conditions, this mutant displays two internal 
disulfide bonds that constraint helices α1 and α2 and α1–α2 loop and α6, therefore 
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blocking the “opening” of Bax structure associated to its activation (Edlich et al. 
2011). When expressed in HCT-116 or HeLa cells, a GFP-tagged version of this 
mutant displayed a mitochondrial localization and, as expected, did not trigger 
apoptosis. Following the photobleaching of GFP fluorescence in cell nuclei, both 
nuclear and cytosolic fluorescence disappeared while mitochondrial fluorescence 
remained. This reflected the rapid dynamics of exchange between the nucleus and 
the cytosol and its absence for mitochondrial Bax. However, by following the reap-
pearance of the fluorescence in the cytosol, the authors showed that a fraction of 
mitochondrial Bax could be retrotranslocated from the mitochondria to the cytosol. 
Most interestingly, this retrotranslocation process was greatly accelerated when the 
anti-apoptotic protein Bcl-xL was overexpressed (Edlich et al. 2011). This led the 
authors to conclude that, in non-apoptotic cells, (1) Bax subcellular localization 
 followed a dynamic equilibrium between mitochondria and cytosol and that (2) anti- 
apoptotic proteins could displace this equilibrium toward a more cytosolic localiza-
tion. An additional interesting observation was that a mutant of Bcl-xL deleted of 
the C-terminal α-helix (Bcl-xLΔC) was unable to promote Bax retrotranslocation, 
and further experiments demonstrated that the deletion of the four last residues of 
Bcl-xL was sufficient to prevent it (Todt et al. 2013). The question remained whether 
this process was only dependent on the intrinsic properties of interaction between 
the two proteins or also involved external factors (such as the presence of other 
Bcl-2 family members). Since yeast does not contain endogenous Bcl-2 family 
members, it is a powerful tool to answer this question. Bax was expressed alone, or 
co-expressed with full-length Bcl-xL, or truncated Bcl-xLΔC in a yeast mutant 
inactivated for the major vacuolar protease Pep4p (the yeast ortholog of cathepsin 
D) and in the presence of the general inhibitor of serine proteases phenylmethylsul-
fonyl fluoride (PMSF). Under these conditions, following the addition of an inhibi-
tor of protein synthesis (cycloheximide), the cellular Bax content remained stable 
for at least 4 h. Mitochondria were then isolated to measure the evolution of Bax 
mitochondrial content following cycloheximide addition. Since the total content 
was stable, any decrease of the mitochondrial content would indicate retrotransloca-
tion. When expressed alone, mitochondrial Bax levels remained constant. When 
co-expressed with Bcl-xL, mitochondrial Bax levels were decreased by 50% within 
2 h. When co-expressed with Bcl-xLΔC, mitochondrial Bax levels remained con-
stant. Similar experiments were done in mouse prolymphocytic cells FL5.12, with 
the same results, showing that the experiment in yeast actually led to observations 
relevant to mammalian physiology. These results were therefore consistent with the 
hypothesis that Bcl-xL (but not Bcl-xLΔC) was able to promote the retrotransloca-
tion of Bax, when the two proteins are co-expressed in yeast. It also demonstrated 
that the retrotranslocation of Bax by Bcl-xL was only dependent on molecular prop-
erties of Bax and Bcl-xL, without interference from factors present in mammalian 
cells and absent from yeast, such as other Bcl-2 family members (Renault et  al. 
2015b). Importantly, no retrotranslocation was observed when a constitutively 
active mutant of Bax, carrying a substitution P168A (Arokium et  al. 2004), was 
used. This supports the view that, once it is inserted and oligomerized (since it is 
able to promote the release of cytochrome c), Bax cannot be retrotranslocated.
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10.4.3   Steady-State Bax Subcellular Localization

Intuitively, the existence of Bax retrotranslocation suggests that, in the presence of 
Bcl-xL, the steady-state Bax localization should be more cytosolic than when Bax is 
expressed alone. This can be correlated with the classical view of overexpressed 
Bcl-xL (or Bcl-2) sequestering Bax away from mitochondria, thus preventing apop-
tosis by restraining Bax ability to reach and permeabilize MOM. However, opposite 
to this prediction, we observed that the overexpression of Bcl-xL or of Bcl-2 increased 
the mitochondrial localization of endogenous Bax in FL5.12 cells (Renault et  al. 
2015b; Teijido and Dejean 2010). Strikingly, Bax mitochondrial content reached the 
same level as the one measured in parental cells committed to apoptosis through IL-3 
removal. Although less marked, a similar effect was observed in HCT- 116 cells over-
expressing Bcl-xL, showing that it was not a particular property of FL5.12 cells. We 
then investigated if this apparently paradoxical effect of Bcl-xL on Bax mitochondrial 
localization was dependent only on the interaction between Bax and Bcl-xL or if 
other factors could be involved, by doing the experiments in yeast. We observed that 
Bax mitochondrial content was increased when Bcl-xL was co- expressed with Bax in 
the yeast model. This last result showed that the presence of BH3-only proteins was 
not essential to Bcl-xL-mediated Bax increase at the mitochondria and that this relo-
cation was a general phenomenon depending only in the presence of Bax and Bcl-xL.

Most interestingly, we observed that the co-expression of Bcl-xLΔC induced an 
even higher increase of Bax mitochondrial localization in FL5.12 cells, in HCT-116 
cells, and in yeast (Renault et al. 2015b). As discussed above, truncated Bcl-xLΔC 
is not able to promote Bax retrotranslocation. This suggested that Bcl-xL regulates 
Bax mitochondrial localization through two opposed processes: retrotranslocation, 
for which Bcl-xLΔC is impaired, and translocation, promoted both by full-length 
Bcl-xL and truncated Bcl-xLΔC.

10.4.4   Bcl-xL and Bcl-2 Differentially Affect MOMP 
Mechanisms in Ways Which Eventually Favor Bax 
Association to Mitochondrial Membranes

Previous to the observation that Bcl-xL was an inhibitor of Bax retrotranslocation, 
the overexpression of Bcl-2 had been shown to increase the mitochondrial localiza-
tion of Bax in non-apoptotic FL5.12 cells (Teijido and Dejean 2010). However, in 
spite of this apparent similarity, the consequences of Bcl-xL or Bcl-2 overexpres-
sion on Bax conformation were clearly distinct. Both proteins induced the confor-
mational change of the N-terminus of Bax, leading to recognition by the 6A7 
antibody, and reveal the association of Bax to the MOM. But, while the overexpres-
sion of Bcl-2 also favored the formation of Bax oligomers (Renault et al. 2013), the 
overexpression of Bcl-xL did not (Renault et al. 2015b). It is yet difficult to draw 
any definitive conclusion about the consequences of this difference. Indeed, under 
both conditions, Bax remains inactive, being inhibited by its anti-apoptotic partner, 
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and no MOMP was observed. But these observations emphasize the view that the 
effects of Bcl-2 and Bcl-xL overexpression on Bax apoptotic signaling are very 
distinct. This might be a crucial consideration to take for attempting to reactivate 
apoptosis in Bcl-2- or Bcl-xL-overexpressing tumoral cells.

Recent structural data brought major advances in the knowledge of Bax organiza-
tion in the outer mitochondrial membrane. The interaction of BaxΔC (deprived of its 
C-terminal hydrophobic α-helix) with the BH3 domain of Bid favors the formation 
of a symmetrical Bax dimer, in which helices α5 and α6 would first lay flat on the 
membrane instead of being inserted as a hairpin and then would arrange a large pore 
by tilting in the membrane (Czabotar et al. 2014; Westphal et al. 2014). The forma-
tion of the pore as a juxtaposition of dimers has been proposed as an alternative to the 
membrane-inserted α-helices (Bleicken et al. 2014; Subburaj et al. 2015). This model 
is compatible with the recent microscopy images showing the ringlike organization 
of Bax in mitochondria of apoptotic cells (Grosse et al. 2016; Salvador- Gallego et al. 
2016). It is also compatible with electrophysiological data suggesting that the pore 
formed by Bax may have different sizes (Martinez-Caballero et al. 2009).

In non-apoptotic FL5.12 cells overexpressing Bcl-2, the presence of oligomers 
similar in size to those observed in apoptotic cells has been observed (Renault et al. 
2013), while no oligomer was detected in the same cells overexpressing Bcl-xL 
(Renault et al. 2015b). By correlating these observations to the structural model of 
Bax oligomers, one could speculate that Bcl-2 would favor the formation of Bax 
oligomers that remain laid down on, but only loosely bound to the membrane, while 
Bcl-xL prevents the formation of oligomers, may be by stabilizing Bax dimers. In 
any case, the disruption of the interaction between Bax and its anti-apoptotic partner 
would be sufficient to promote the organization of the pore-forming oligomer(s).

10.5  Bax Mitochondrial Relocation: Apoptotic 
and Metabolic Implications

10.5.1   The Upregulation of Anti-apoptotic Multi-domain Bcl-2 
Family Proteins Primes Cancer Cells to Programmed 
Cell Death

Importantly, the anti-apoptotic proteins like Bcl-2 cause an accumulation of sentinel 
proteins, like Bim, in mitochondria (Certo et  al. 2006). While overexpression of 
Bcl-2 suppresses apoptosis, the excess of sentinel proteins may be an Achilles heel 
that might be exploited to selectively target cancer cells to die. Imbalances in the 
interaction network of Bcl-2 family proteins, e.g., through the variation of the 
expression level of various members, likely underlie some degenerative diseases 
and are known to cause cancer. But these imbalances may also reveal therapeutic 
targets. For example, genetic events leading to overexpression of the Bcl-2 proto- 
oncogene suppress apoptosis and are associated with tumor formation and, more 
particularly, B-cell non-Hodgkin’s lymphoma (Egle et  al. 2004; Meijerink et  al. 
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2005; Swanson et al. 2004). Prolymphocytic cell lines overexpressing Bcl-2 exhibit 
a resistance to mitochondrial apoptosis and induce lymphoma upon injection in 
mice (Goping et al. 1998; Gross et al. 1998; Meijerink et al. 2005; Pavlov et al. 
2001). Hence, overexpression of Bcl-2 is associated with cancer. While these cells 
are more resistant to death, apoptotic stimuli cause the sequestration of sentinel 
proteins such as Bim in mitochondria (Certo et al. 2006; Del Gaizo Moore et al. 
2008). This accumulation has been coined sensitization or “primed for death” and is 
illustrated in Fig. 10.2b. Small molecules that mimic the important BH3 domain can 
function as competitive inhibitors and bind to the hydrophobic cleft in Bcl-2. In 
doing so, these BH3 mimetics release sequestered pro-apoptotic proteins and the 
primed cells now die. Like most apoptotic stimuli, BH3 mimetics alone do not kill 
these cells. However, the BH3 mimetics act synergistically with chemotherapeutic 
agents (which provides the apoptosis signal) to trigger an increase in MAC forma-
tion to selectively kill cancer cells overexpressing anti-apoptotic proteins like Bcl-2. 
That is, BH3 mimetics, represented by ABT-737, are able to selectively kill these 
cancer cells by inhibiting the interactions, e.g., between Bcl-2 and Bim (Certo et al. 
2006; Letai 2008; Oltersdorf et  al. 2005) and triggering an increase of MOMP 
(Fig. 10.2b), a property potentially optimized by the activity of direct MAC activa-
tors which are yet to be found. It is important to note that ABT-737 inhibits all the 
known anti-apoptotic proteins except Mcl-1. Naturally, this primed to die approach 
will only work on cancer cells that survive because they overexpress anti-apoptotic 
proteins and accumulate pro-apoptotic proteins in mitochondria. Hence, develop-
ment of personalized chemotherapy using BH3 mimetics will likely require pre- 
diagnosis of such an anti-apoptotic addiction through BH3 profiling (Certo et al. 
2006; Letai 2008; Oltersdorf et al. 2005).

10.5.2   Bax Priming Is Enhanced in Cells Overexpressing 
Bcl-xLΔC or Bcl-xL

The immediate consequence of the increase in the steady-state level of mitochon-
drial Bax is a potentially higher ability to initiate apoptosis. However, the presence 
of Bcl-xL, and the interaction between the two proteins, obviously prevents Bax 
activation. This can be verified by the fact that IL-3 removal induced a lower level 
of apoptosis in Bcl-xL-overexpressing FL5.12 cells than in parental cells (Renault 
et al. 2015b). Here again, the inhibition only depends on the interaction between 
Bax and Bcl-xL since, in yeast, the effect of a constitutive mitochondrial and 
active mutant of Bax on mitochondrial permeabilization is also prevented by the 
co- expression of Bcl-xL. On the other hand, the overexpression of Bcl-xLΔC does 
not prevent the apoptosis of FL5.12 cells induced by the removal of IL-3 and does 
not prevent the permeabilization of yeast mitochondrial membrane by a constitu-
tively active Bax mutant. In line with these observations, co-immunoprecipitation 
assays showed that the interaction between Bax and Bcl-xLΔC could not be 
depicted under conditions where the one between Bax and full-length Bcl-xL was 
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detected. This demonstrates that the presence of the C-terminal α-helix of Bcl-xL 
is required for a stable interaction and subsequent efficient inhibition of Bax 
(Renault et al. 2015b).

Furthermore, we observed that the expression of Bcl-xLΔC promoted Bax- 
driven MOMP in yeast. This rather unexpected effect was dependent on the inter-
action between the two proteins, since it was abrogated by the canonical G138A 
mutation in the BH1 domain (Renault et al. 2015b), which is known to fully pre-
vent the interaction between Bax and Bcl-xL (Ottilie et al. 1997). These results 
showed that, although it was not detectable by co-immunoprecipitation, a transient 
interaction between Bax and Bcl-xLΔC occurred and was sufficient to increase 
mitochondrial Bax content, but was not sufficient to prevent Bax-induced permea-
bilization. This was not observed with full-length Bcl-xL since its interaction with 
Bax, while inducing translocation of the pro-apoptotic protein, was stable enough 
to also keep it inactive. Since Bcl-xLΔC is not a natural variant of the protein, we 
searched for experimental conditions which could reveal that full-length Bcl-xL is 
also able to prime Bax. Experiments on pure recombinant proteins had previously 
shown that the binding, then release, of Bax and Bcl-xL could initiate the active 
conformation of Bax that can be depicted with the 6A7 monoclonal antibody (Hsu 
and Youle 1997). The release could be induced by peptides corresponding to the 
BH3 domain of canonical BH3-only proteins, such as Puma, or by BH3-mimetic 
molecules such as ABT-737 (Gautier et al. 2011). Therefore we used ABT-737 to 
disrupt Bax/Bcl-xL interaction both in the FL5.12 and the yeast models. The addi-
tion of ABT- 737 to parental FL5.12 cells did not induce apoptosis, in agreement 
with the observations from (Certo et al. 2006). However, the addition of ABT-737 
to FL5.12 cells overexpressing Bcl-xL did induce a significant level of apoptosis 
(Renault et al. 2015b). We also observed that ABT-737 had no effect on the bio-
mass formation of yeast cells expressing Bax alone, or Bcl-xL alone, but that it 
significantly decreased the biomass formation of cells co-expressing Bax and 
Bcl-xL. Although this result cannot be simply interpreted in terms of Bax-induced 
MOMP, for the obvious reason that yeast does not naturally express canonical 
Bcl-2 family proteins (Kissova et al. 2006), it is nevertheless in agreement with 
the effect of ABT-737 we observed in Bcl-xL-overexpressing FL5.12 cells 
(Renault et al. 2015b).

These experiments show that, both in FL5.12 cells and in yeast, the transient 
interaction between Bax and Bcl-xL followed by the release of the interaction pro-
motes the activation of Bax, like previously reported using pure recombinant pro-
teins. This has interesting consequences on the potential efficiency of BH3-mimetic 
molecules in antitumoral therapy. These molecules were designed to prevent the 
inhibition of apoptosis by anti-apoptotic Bcl-2 family members (essentially Bcl-2, 
Bcl-xL, and Mcl-1), which are overexpressed in most cancer cells (see, e.g., Castilla 
et al. 2006; Pena et al. 1998; Tang et al. 1998). The fact that, by breaking the interac-
tion between Bax and Bcl-2/xL, not only they liberate Bax, but they further activate 
it, renders these molecules even more desirable as antitumor therapy, provided that 
Bax is still expressed and not mutated.
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10.5.3   A Possible Correlation Between Bax Phosphorylation 
and Its Interaction with Bcl-xL

Combined together, the results presented above indicate that Bcl-xL is able to stim-
ulate Bax translocation to the MOM, but also Bax retrotranslocation to the cytosol. 
However, this putative futile cycle would appear to be shifted toward a net increase 
of Bax activation and mitochondrial relocation when the expression levels of either 
Bcl-2 or Bcl-xL are high (Renault et al. 2015b; Teijido and Dejean 2010). The con-
sequence of these effects is the establishment of a steady state for which the mito-
chondrial membranes of Bcl-2/xL-overexpressing cells are “overloaded” with a 
high mitochondrial content of “primed” Bax, ready to trigger apoptosis. This might 
make the system more reactive than if Bax was only sequestered away from mito-
chondria, since Bax is already on target, ready to be activated after the release of its 
interaction with Bcl-2/Bcl-xL. However, the efficiency of such a “dynamic cycling” 
model implies that the interaction between Bax and Bcl-xL has different properties 
depending if it happens in the cytosol or in the MOM. Interestingly, these different 
properties might be directly related with differences in the chemical compositions 
of the cytosolic vs mitochondrial form of Bax (Fig. 10.3).

The study of the phosphorylation of S184 has attracted much interest because this 
residue is located in Bax C-terminal α-helix, a structure for which the conformational 
change is crucial to initiate Bax relocalization (see Sect. 10.2). It had been shown that 
the phosphorylation of S184 retained Bax away from mitochondria, while its dephos-
phorylation has the opposite effect (Gardai et al. 2004). This could be reproduced in 

Fig. 10.3 Regulation of Bax mitochondrial localization through phosphorylation and interaction 
with Bcl-xL (1) When Bax is phosphorylated on S184, it is spontaneously mostly located in the 
cytosol. However, the small fraction that remains in the mitochondrial membrane is able to oligo-
merize to form a pore that promotes the release of cytochrome c (2). (3) When Bax is not phos-
phorylated, it is spontaneously mostly located in the mitochondrial membrane, but is unable to 
oligomerize to form the pore. (4) In the presence of Bcl-xL, phosphorylated Bax and Bcl-xL are 
conveyed together to the membrane where the high stability of the interaction prevents the activa-
tion of Bax. Although the process is reversible through retrotranslocation, the system is favored 
toward Bax mitochondrial localization through the possible dephosphorylation of Bax. Conversely, 
in the presence of de-repressors of the interaction between Bax and Bcl-xL (BH3-only proteins, 
such as Bim, or BH3-mimetic drugs, such as ABT-737), Bax is able to form a pore with great 
efficiency because it is already present in great amount in the membrane
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yeast where the mutants S184A/V have a higher mitochondrial localization than the 
mutant S184D (Arokium et al. 2007; Simonyan et al. 2016). However, this did not 
fully correlate with the ability of these mutants to induce MOMP. Indeed, the mutant 
S184D was surprisingly more efficient than mutants S184A/V (and wild-type Bax) to 
promote the release of cytochrome c. These results suggest that the intrinsic capacity 
of the phosphomimetic mutant to induce MOMP was higher than that of the non-
phosphorylatable mutant and that was apparently in contradiction with the fact that 
Bax phosphorylated on S184 is less able to induce apoptosis that its non-phosphory-
lated counterpart (Gardai et al. 2004). Part of the answer to this paradox might be 
related to the fact that, in mammalian cells, Bax is not expressed alone, but in the 
presence of, namely, anti-apoptotic proteins. Bax phosphomimetic and non-phos-
phorylatable mutants were then co-expressed with full-length Bcl-xL or truncated 
Bcl-xLΔC (Simonyan et al. 2016). It was observed that the mitochondrial localization 
of the phosphomimetic mutant S184D did not differ from that of wild-type Bax, with 
an increase induced by Bcl-xL and a further increase induced by Bcl-xLΔC, linked to 
the absence of retrotranslocation, as described above. Interestingly, the behavior of 
the non-phosphorylatable mutant S184A differed: its mitochondrial content was 
increased by Bcl-xL, like that of wild-type Bax and of the phosphomimetic mutant 
S184D, but it was not further increased, and was even about twice less increased, by 
Bcl-xLΔC. This suggests that retrotranslocation did not have any effect on the mito-
chondrial localization of non-phosphorylatable Bax (Simonyan et al. 2016).

In mammalian cells, a correlation between the phosphorylation of S184 and the 
retrotranslocation of Bax by Bcl-xL had also been observed (Schellenberg et  al. 
2013): in this context, a mutant GFP-Bax-S184V was retrotranslocated slower than 
GFP-BaxWT, paralleling the observations in yeast discussed above. Also, the over-
expression of AKT stimulated the retrotranslocation of GFP-BaxWT. However, this 
study did not mention if the overexpression of AKT had also an effect on the ret-
rotranslocation of GFP-Bax-S184V or not. It cannot be then yet ascertained that this 
effect of AKT and the consequence of the phosphorylation of S184 on Bax ret-
rotranslocation are strictly correlated. It should be noted that, when Bax and AKT 
were co-expressed in yeast, not all the effects of AKT were abolished by the substi-
tution S184V, suggesting that part of the effect of AKT may occur through the 
phosphorylation of an additional residue besides S184 (Simonyan et al. 2016).

10.5.4   Is There a Direct Link Between Bax Mitochondrial 
Relocation and Metabolic Regulation?

There are many hallmarks associated with cancer cells. They include “sustaining 
proliferative signaling, evading growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, metastasis, evading immune 
destruction and reprogramming of energy metabolism” (Hanahan and Weinberg 
2011). A cancer hallmark that has always been of great interest are metabolic shifts 
which can be observed in most tumor cells (Hsu and Sabatini 2008). Otto Warburg’s 
group discovered in the early 1920s that fuel metabolism in cancer cells tends to 
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rely more on lactic fermentation, a phenomenon which happened to be later named 
“the Warburg effect” (Vander Heiden et al. 2009). This in return helps the cancer 
cells survive in various environments and more particularly hypoxia (Moreno- 
Sanchez et al. 2007). However, this effect does not seem to be due only to a strict 
increase of lactic fermentation vs oxidative phosphorylation in all cancer cells: for 
instance, if a clear fermentative shift may be observed in insulinoma RINm5F cells, 
a parallel increase in both glycolytic and oxidative phosphorylation fluxes is 
observed in C6 glioma cells (Martin et  al. 1998; Moreno-Sanchez et  al. 2007). 
Finally, no clear picture has yet emerged in terms of the molecular definition of 
metabolic shifts in lymphoma cells. Overexpression of the anti-apoptotic Bcl-2 has 
been reported in many tumor types and is highly correlated with poor survival and 
resistance to chemotherapy (Lessene et al. 2008). It is worth noting that the BH3- 
only Bcl-2 family protein Bad was recently shown to be a master regulator of the 
balance between oxidative glycolysis and gluconeogenesis in normal hepatocytes 
(Gimenez-Cassina et al. 2014). It is actually worth noting that Bad exerts its regula-
tory function in the form of a glucokinase-containing complex loosely bound to the 
mitochondria and that phosphorylation of Bad by survival kinases (such as AKT) is 
essential in this process (Gimenez-Cassina and Danial 2015). It was also observed 
that Bcl-xL overexpression in normal neurons leads to a decrease of mitochondrial 
proton leak, a phenomenon which was attributed to physical interactions between 
the c subunit of the ATP synthase and an inner membrane embedded form of Bcl-xL 
(Jonas 2014). The activity of the mitochondrial enzyme cytochrome c oxidase was 
also positively correlated with Bcl-2 expression levels in isolated mitochondria 
from several cancer models (Chen and Pervaiz 2010; Moreno-Sanchez et al. 2007). 
However, there is surprisingly only a very few molecular and mechanistic data on 
the effects of Bcl-2 expression levels on whole-cell bioenergetics and metabolism. 
Our laboratory previously showed that, in pre-lymphocytes B, Bax translocation to 
mitochondria increased in response to an overexpression of Bcl-2 (Teijido and 
Dejean 2010). We also recently observed that Bcl-2 or Bcl-xL overexpression 
caused a significant change to the 1H-NMR-defined metabolomic pattern of FL5.12 
cells (Fig. 10.4). Interestingly, both this Bcl-2-dependent Bax relocation and meta-
bolic changes were strongly attenuated if a Bcl-2 mutant of interaction with Bax 
(Bcl-2 G145E) was overexpressed instead of native Bcl-2 (Fig. 10.4 and Teijido and 
Dejean 2010). All these studies lead to our hypothesis that carbohydrate metabolism 
can be directly regulated by anti-apoptotic multi-domain Bcl-2 family proteins. 
They also suggest that the ability of Bcl-2 to interact with Bax and the increase of 
the abundance of mitochondrial membrane loosely bound Bax-containing com-
plexes in Bcl-2-overexpressing cells are essential during this regulatory process.

10.6  Concluding Remarks

Bcl-2/xL are anti-apoptotic proteins that eventually insert into the MOM during 
apoptosis. It is well established that an excess of Bcl-2/xL inhibits apoptosis; this 
inhibition is requiring the ability of Bcl-2/xL to physically interact with Bax and to 
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sequester Bim at the mitochondria (Letai 2008). Bax oligomerization and cyto-
chrome c release through the mitochondrial channel MAC are also inhibited by 
Bcl-2/xL overexpression (Antonsson et al. 2001; Pavlov et al. 2001). We recently 
found that Bax translocation in mitochondria was increased in response to Bcl-2 or 
Bcl-xL overexpression (Fig.  10.3). This observation suggests that an excess of 
Bcl-2/xL triggers not only a mitochondrial accumulation of pro-apoptotic sentinel 
proteins such as Bim but also of pro-apoptotic effector proteins such as Bax. 
Considering that Bcl-2 overexpression does not inhibit Bax interaction with its 
putative receptor Tom22 (Renault et al. 2012), these results strongly suggest that 
Bcl-2/xL upregulation leads to the accumulation of MAC precursors as a conse-
quence of inhibiting MAC formation. Finally, Bcl-2 and Bcl-xL are positive effec-
tors of mitochondrial respiration and mass, respectively (Berman et al. 2009; Chen 
and Pervaiz 2010). Our recent results show that Bcl-2 effects on Bax translocation 
and carbohydrate metabolomics depend on the ability of Bcl-2 to bind Bax (Teijido 
and Dejean 2010 and Fig. 10.4). Taken together, these findings reinforce the hypoth-
esis that several members of the Bcl-2 family proteins can behave as master co- 
regulators of both cell death and energy metabolism. Part of the molecular 
mechanisms underlying this co-regulation involves shifts in steady states of Bax 
locations; i.e., shifts which tend toward a net increase of Bax mitochondrial content 
(and change of conformation) are observed in prolymphocytes and yeast cells when 
Bcl-2 or Bcl-xL is constitutively overexpressed (Renault et  al. 2013, 2015b). A 
model illustrating the details of these possible chain of events is shown in Fig. 10.5. 
In summary, Bcl-2 and Bcl-xL have long been associated with inhibition of cell 

Fig. 10.4 Effects of Bcl-2/xL on 1H-NMR-defined metabolomes 400 MHz 1H NMR spectra of 
three different intracellular metabolites samples from whole FL5.12 cell lines obtained after ace-
tonitrile extraction (Odunsi et al. 2005). f1 (in ppm) is relative to the reference peak of TSP (set 
arbitrarily at 0). Regions of the spectrum showing difference in the measured metabolites are 
shown by vertical blue arrows. Data are then binned, cluster analyzed, and matched for metabolite 
identification using BMRB database (Izquierdo-Garcia et al. 2011). Comparison of metabolomic 
cloud profiles show significant differences between the metabolomics profiles of Parental (wt), 
Bcl-2-overexpressing (bcl), and Bcl-xL-overexpressing (xl) FL5.12 cell lines. Of note, these dif-
ferences tend to be cancelled out if Bcl-2-G145E (mbc), a Bcl-2 mutant of interaction with Bax, is 
overexpressed instead of native Bcl-2 (compare the red and dark blue cloud patterns on the right 
side of the figure)
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death. However, the study of the molecular mechanisms associated with their func-
tions in the definition of both cell metabolism and cell fate is still in its infancy. 
Therefore, a deeper understanding of these cross regulatory processes should pro-
vide essential clues to improve and/or define therapeutic strategies against selective 
forms of cancer associated with abnormal increased amounts of Bcl-2 and/or 
Bcl-xL (e.g., certain forms of blood cancer such as non-Hodgkin’s lymphoma 
(Meijerink et al. 2005)).
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Fig. 10.5 Bcl-2 and Bcl-xL inhibit apoptosis and regulate metabolism via different molecular 
mechanisms Left. Bcl-2/xL overexpression results in Bax translocation and change of conforma-
tion (pre-activation) at the mitochondrial membrane level. During this step, Bax, in combination 
with Bcl-2, forms MOMP-machinery precursors if Bcl-2 is overexpressed; when Bcl-xL overex-
pression leads to the accumulation of membrane-embedded heterodimers Bax/Bcl-xL which are 
cytochrome c release incompetent. When the interactions between Bax and Bcl-2 or Bcl-xL are 
inhibited by BH3-only proteins or the drug ABT-737, cytochrome c release occurs and the cell dies 
by apoptosis. Right. Potential mechanistic link between apoptotic and metabolic regulations by 
anti-apoptotic Bcl-2 family proteins. Bcl-2/COX and Bcl-xL/ATP synthase c subunit interactions 
at the mitochondrial membranes and/or tethers are observed in response to Bcl-2 and Bcl-xL over-
expression. Bcl-2/COX interaction and Bcl-xL/ATP synthase c subunit interaction have been asso-
ciated with an increase of cytochrome c oxidase and efficiency of the ATP synthase activities, 
respectively. We hypothesize that Bax relocation triggered by Bcl-2/xL overexpression is impor-
tant to Bcl-2/xL-mediated metabolic regulation. The rationale of our hypothesis reposes on the 
facts that both Bax accumulation and metabolomics pattern are cancelled if Bcl-2 overexpression 
is replaced by the overexpression of a Bcl-2 mutant which has lost its ability to interact with Bax 
(see Fig. 10.4)
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EM Electron microscopy
ERα Oestrogen receptor α
Ets E26 oncogene homolog
FCCP Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone
GABA Gamma-aminobutyric acid
HIV Human immunodeficiency virus
HPA Hypothalamic-pituitary-adrenal
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I/R Ischemia/reperfusion
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mPTP Mitochondrial permeability transition pore
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NMR Nuclear magnetic resonance
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PBR Peripheral-type benzodiazepine receptor
PD Parkinson’s disease
PEPCK Phosphoenolpyruvate carboxykinase
PET Positron emission tomography
PGC-1α PPAR-gamma coactivator-1 α
PINK1 PTEN-induced putative kinase 1
PKA Protein kinase A
PKCε Protein kinase Cε
PMA Phorbol-12-myristate 13-acetate
PPAR Peroxisome proliferator-activated receptor
PpIX Protoporphyrin IX
ROS Reactive oxygen species
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Sp Specificity protein
StAR Steroidogenic acute response protein
STAT Signal transducer and activator of transcription
TM Transmembrane (number assignment for helices in TSPO structure)
TSPO Translocator protein
TspO Tryptophan-rich sensory protein
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11.1  A Historical Perspective

TSPO was discovered in studies determining the physiological targets of benzodi-
azepines. This group of small molecules bears psychoactive properties which have 
made them the standard treatment of anxiety disorders and seizures in which they 
inhibit neuronal excitation through their binding to gamma amino butyric acid 
(GABA) receptors (Saari et al. 2011). Initial studies in 1977 had found that radiola-
belled benzodiazepines bind to human cortical areas of the brain, with a specific 
member of the group, named Ro5-4864, having preferential affinity for peripheral 
areas (Braestrup et al. 1977). Experiments on fractionated rat brain membranes then 
proved that Ro5-4864 displayed superior binding to the mitochondrion, observed 
beyond the brain in the kidneys, liver and lungs (Braestrup and Squires 1977), thus 
providing evidence of a separate benzodiazepine-binding site.

The second site, named peripheral benzodiazepine receptor (PBR), was charac-
terised as being specifically localised in olfactory nerves (Anholt et al. 1984), with 
much greater affinities found in endocrine organs, like the pituitary gland, adrenal 
gland and testis (De Souza et al. 1985). Finally, the discovery of an isoquinoline 
carboxamide ligand, named PK11195, with a high affinity to PBR (Benavides 
et al. 1983a, b, 1985), allowed researchers in 1986 to identify this protein as being 
subcellularly localised on the outer mitochondrial membrane (OMM) (Anholt 
et al. 1986).

The work carried out over the subsequent years largely utilised pharmacological 
tools to infer the function of PBR. The abundance of PBR in steroidogenic tissues 
led to focussed studies on its involvement in endocrinology. In the 1990s, the role of 
PBR in steroid hormone pathways was investigated (Gavish et  al. 1999). The 
hypothalamic- pituitary-adrenal (HPA) axis, an important stress-induced pathway 
which controls adrenal corticosteroid production from the central nervous system 
(CNS) (Smith and Vale 2006), was linked with PBR. PK1195 and Ro5-4864 were 
found to, respectively, stimulate the production of adrenocorticotropin (ACTH) and 
corticotropin-releasing factor (CRF) when administered onto the hypothalamus and 
pituitary, whilst PBR levels were modulated in the adrenal gland by the action of 
ACTH (Bar-Ami et al. 1989; Calogero et al. 1990). Studies on the sexual hormone 
pathways gave similar outcomes, as PBR expression was observed to increase in 
genital organs during the oestrous cycle (Fares et al. 1987, 1988), testes maturation 
(Mercer et al. 1992) and also in the adrenal gland controlled by the action of testos-
terone (Amiri et al. 1991; Weizman et al. 1992). At this time, speculations of the 
pleiotropic nature of PBR emerged. The protein was found to interact with multiple 
drugs and targets, including porphyrins (Verma et al. 1987), and diazepam-binding 
inhibitor (DBI) (Alho et al. 1985; Gray et al. 1986), as well as observed change in 
expression in various pathologies, such as stress disorders and neurodegenerative 
diseases (Gavish et al. 1999).

The greatest clarification for its role however came from concomitant cell biol-
ogy studies. By using cell lines derived from testicular Leydig cells and adrenocorti-
cal tissues, PBR was discovered to hold the specific function of mediating cholesterol 
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transport across the mitochondrial membranes (Krueger and Papadopoulos 1990). 
This finding fundamentally explained the involvement of PBR in steroid hormone 
pathways as steroidogenesis requires cholesterol to be transported from the cyto-
plasm, where it is produced or deposited, into the mitochondrion, to be catalysed 
into steroids.

This developed understanding of PBR laid the groundwork for the use of more 
systematic studies, with genetic disruption techniques solidifying its molecular 
function (Papadopoulos et al. 1997b). PBR was soon after realised to adopt multiple 
oligomeric states (Papadopoulos et  al. 1994), and benzodiazepine binding was 
found to be dependent on the heteromeric (Garnier et  al. 1994) association with 
other membrane-bound proteins, such as VDAC1 and adenine nucleotide transloca-
tor (ANT) (McEnery et al. 1992). However, at the same time the idea that PBR was 
associated with other aspects of mitochondrial physiology began to manifest, as 
more processes, such as apoptosis (Hirsch et al. 1998), mitochondrial permeability 
transition pore (mPTP) (Chelli et al. 2001) and oxidative stress (Jayakumar et al. 
2002), were linked to the protein. Furthermore, associations with various pathologi-
cal conditions were strengthened, including; (i) cancer (Austin et al. 2013), (ii) neu-
rodegeneration (Rogers et al. 2007) and (iii) cardiovascular diseases (Veenman and 
Gavish 2006).

Henceforth, in 2006, PBR was renamed TSPO to better reflect its molecular 
function (Papadopoulos et al. 2006).

Notably, consequent studies linked TSPO to functions in mammals, plants 
(Vanhee et al. 2011) and prokaryotes (Yeliseev et al. 1997). Notable publications 
provided the nuclear magnetic resonance (NMR) structure of the mammalian TSPO 
(Jaremko et al. 2014) and showed that a newer, more specific ligand produced anx-
iolytic effects by increasing the microglial production of neurosteroids (Rupprecht 
et al. 2009).

From its discovery, TSPO has historically been of great interest for neuroscientists 
and neurologists. Since early studies were mostly carried out with radiopharmaco-
logical techniques, it did not take long for researchers to observe an increase in TSPO 
expression upon damage to the nervous system. Towards the end of the 1980s, sub-
stantial evidence was already gathered on the connection between levels of TSPO 
and neuronal damage (Benavides et al. 1987; Dubois et al. 1988), as well as the pres-
ence in gliomas (Junck et al. 1989). The protein is currently targeted by a range of 
ligands utilised to extrapolate data on its levels and localisation in the CNS. However, 
newer generation ligands, more advanced techniques and knowledge of the behav-
iour of the protein in neuroglia have permitted preclinical use in patients. Targeting 
TSPO is in fact exploited by positron emission tomography (PET) to non-invasively 
visualise gliomas and patterns of CNS neurological damage (Janczar et  al. 2015; 
Turkheimer et al. 2015). In the former, this is possible due to the aberrant expression 
of TSPO observed in cancerous glial cells. As for neurological damage, the technique 
exploits the properties of neuroinflammation, a CNS-specific inflammatory response. 
When neurological damage is inflicted upon the CNS, microglia and astrocytes 
undergo a switch in metabolism and proliferate to take on a new set of functions 
(Ransohoff and Perry 2009). These glial cells have a complex and yet not fully known 
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 physiology. However, microglia have been shown to adopt different states, each 
 harbouring functional responsibilities like phagocytosis, neuromodulation, synaptic 
remodelling and inflammation (Gomez-Nicola and Perry 2014). The latter can be 
triggered by damaged neurons in a very localised and sensitive way, which can be 
detected within minutes (Graeber 2010). Neuroinflammation is accompanied by a 
vast upregulation in TSPO in microglia and astrocytes, which is detected by the 
radioligands (Banati 2002; Cagnin et al. 2007). This technique allows early detection 
of neurological damage of a variety of types, from multiple sclerosis (MS) to 
Parkinson’s disease (PD), and does not suffer from the uncertainties surrounding the 
function of TSPO, as it does not require a functional involvement in the neuroinflam-
matory processes.

11.2  The Structure of Mammalian TSPO and Bacterial 
Homologs

TSPO was identified early on to be a small 18 kDa protein residing in the OMM 
(Anholt et  al. 1986; McEnery et  al. 1992). Yet despite the attention given to the 
protein, the structure of TSPO has only been recently resolved at atomic resolution 
(>1.6 Å) (Guo et al. 2015; Li et al. 2015). This is mainly due to the naturally flexi-
ble, membrane-bound nature of the protein, requiring a lipidic environment to pro-
vide structural stability and native conformations, needed for X-ray crystallographic 
and NMR techniques. Nevertheless, various structural characteristics and low reso-
lution models were defined before 2014.

A molecular dynamics simulation predicted TSPO to have five α-helices, each 
long enough to span a single lipid monolayer, with the N-terminus in the intermem-
brane space and the C-terminus in the cytoplasm (Bernassau et  al. 1993). This 
hypothesis was perfected by topological analysis using immunolabelling and amino 
acid tagging to reveal membrane-enclosed α-helical regions (Joseph-Liauzun et al. 
1998), demonstrated to span the entire lipid bilayer, known as transmembrane (TM) 
helices, and extend outside of the membrane via loops. Successive works showed 
that the previously identified cholesterol recognition amino acid consensus (CRAC) 
motif, a region responsible for cholesterol binding (Li and Papadopoulos 1998), was 
located on the C-terminal cytoplasmic side, suggested to attract cholesterol and suc-
cessively allow the molecule to translocate across TSPO (Lacapère et  al. 2001; 
Murail et al. 2008). It was additionally demonstrated by NMR that cholesterol stabi-
lises the tertiary helical bundle structure of TSPO, binding with a 1:1 stoichiometry.

Cryo-electron microscopy (EM) has provided the first 10 Å resolution structure 
of the bacterial ortholog of TSPO (Korkhov et al. 2010), known as tryptophan-rich 
sensory protein (TspO) in Rhodobacter sphaeroides, a close ancestor of the mito-
chondrion (Yeliseev and Kaplan 2000). This was possible due to the fact that TSPO 
is an ancient protein, with remarkably conserved sequence found in bacteria to 
mammals (Gatliff and Campanella 2016; Selvaraj and Stocco 2015), with notable 
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exceptions of Escherichia coli (Li and Papadopoulos 1998) and yeast (Joseph- 
Liauzun et al. 1998). R. sphaeroides TspO (RsTspO) has proved to be a valuable 
model for structural studies due to its structural and functional similarities, such as 
its ability to porphyrin molecules and PK11195 at high affinity (Li et al. 2015) and 
bacterially non-native cholesterol. Korkhov and colleagues modelled a dimeric 
structure with the 5 TMs, slightly inclined with respect to the vertical axis, arranged 
in a sequential N-to-C terminus order forming a bundle or cylinder. The interface 
between the two TspO dimers was shown to consist of TM1 and TM2, whilst the 
arrangement of TSPO in its native multimeric state remains under discussion. 
Studies in prokaryotes suggested that TspO may exist in a dimeric state, while in 
mammalian cells functional data has suggested that TSPO forms complexes with 
VDAC1 in a stoichiometry of 5:1 (Papadopoulos et  al. 1994), to which reactive 
oxygen species (ROS) are able to regulate this association (Delavoie et al. 2003). 
Interestingly, differences in TSPO states of oligomerisation conserved between 
phyla and conferred by the lack of TM1 sequence indicated this region of the pro-
tein to be involved in oligomeric interactions.

The NMR study of mammalian TSPO (mTSPO) instead showed that monomers 
of the protein are indeed stable when reconstituted in dodecylphosphocholine 
(DPC) micelles (Jaremko et al. 2014). The resulting structure, obtained in complex 
with PK1195, exhibited striking similarity in comparison to that complex structure 
obtained with RsTspO, indicating conserved structural importance of TSPO. The 
high-resolution model obtained also provided additional information. Firstly, the 
helical bundle does not exactly follow the anticlockwise sequential arrangement 
seen from cytosolic view, as previously suggested; the circle starts from TM2, con-
tinues with TM1 and then continues with the arrangement. Furthermore, a loop 
(LP1) between TM1 and TM2 forms a small α-helix on the cytosolic side of the 
membrane, near the C-terminus (Fig. 11.1a). This small helix has a flexible struc-
ture which assumes a more steady state upon PK11195 binding, acting as a lid to 
stabilising ligand binding into a solvent-filled cavity. This study determined 61 
molecular contacts between PK11195 in TSPO’s binding pocket, made by ten con-
served residues contributed by all five TMs. Notably, the CRAC motif was found to 
be located on TM5’s C-terminus, in contact with the cytosolic side of the lipid layer 
(Fig. 11.1b). This result contradicted the previous models, in which the CRAC motif 
was suggested to constitute a cholesterol-docking site, which then allows passage 
across a “TSPO channel”. Jaremko et al. also showed in a following publication that 
mTSPO can dynamically adopt a range of different conformations in the absence of 
ligand binding (Jaremko et al. 2015a).

In 2015, two X-ray crystallography studies were published using prokaryotic 
TspO: an R. sphaeroides model of the human polymorphism (Li et al. 2015a) and a 
Bacillus cereus structure to support the hypothesis of an ancient function of the 
TSPO proteins in porphyrin metabolism (Guo et al. 2015). The human alanine (147) 
to threonine (A147T) substitution is a commonly found polymorphism which has 
raised interest due to its inhibitory effect on PET ligand binding (Turkheimer et al. 
2015). However, the importance of this polymorphism extends beyond its preclini-
cal exploitation. Patients carrying the A147T mutation have in fact been shown to 
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Fig. 11.1 Structure of prokaryotic and mammalian TSPO homologs. Ribbon structure of current 
single unit mammalian TSPO, achieved through NMR solution structure, and prokaryotic homo-
log structures obtained through X-ray crystallography. Arrangement of TM bundle of single unit 
TSPO is constricted by structural data obtained from homodimeric interactions. Sequence is pro-
gressively coloured from the N-terminus (dark blue) to C-terminus (red), whilst PK11195 moiety, 
located in TSPO central cavity, is pink. a Cytosolic view of RsTspO, BcTspO-PK11195 and 
mTSPO-PK11195, highlighting TM arrangement in membrane unanimously conferring to TM1, 
TM2, TM5, TM3, TM4 clockwise topological order. Particular differences can be seen for BcTspO 
and mTSPO small α1,2 helix length, with missing LP1 electron density data in apo-RsTspO due to 
its flexible nature in solution. b BcTspO and mTSPO viewed from the membrane plane, spanning 
lipid bilayer. BcTspO-PK11195 with conserved tryptophan residues drawn as sticks (brown), 
known to interact with PpIX. mTSPO, located on OMM, with essential CRAC residues drawn in 
sticks (black), and indicated A147 SNP preceding CRAC motif. Models of BcTspO, RsTspO and 
mTSPO monomers adopted from the following publications, respectively (Guo et  al. 2015; 
Jaremko et al. 2014; Li et al. 2015a), PDB accession codes – BcTspO-PK11195, 4RYI; RsTspO, 
4UC3; mTSPO-PK11195, 2MGY
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display predisposition to a spectrum of anxiety-related disorders as a consequence 
of decreased neurosteroids production, thereby creating the only solid causative link 
between the protein and disease.

Structural investigation into the polymorphism was presented by Li and colleagues 
which compared to the crystal structures of WT RsTspO and the polymorphism 
model A139T, both without the presence of pharmacological ligands. The WT 
RsTspO crystal structures support the findings of Korkhov et al. regarding the dimeric 
arrangement, albeit with an interface contributed mainly by TM3 and TM1, consist-
ing on ~15% of the monomer’s surface area. This interface is efficiently interlocked, 
lacking hydrogen bond interactions, thereby refuting the possibility of this region 
providing a channel for cholesterol passage. The major differences between WT and 
A139T RsTspO structures are attributed to the LP1 α-helix and the nearby CRAC 
motif conformation. Due to its flexible nature, the structure of LP1 was not fully 
resolved in WT RsTspO; however the A139T mutation allowed stabilisation and 
therefore modelling of this helix. Additionally, A139T RsTspO resulted in a 7.7° tilt 
of TM2 towards TM5 and therefore tighter bundle packing, in turn observing a dis-
torted CRAC motif region. Nearby TM1 and TM2 observes a groove beginning from 
the porphyrin binding site and extending onto the external face of the protein, sug-
gesting an external transport pathway requiring protein partners. Lastly, experiments 
with protoporphyrin IX (PpIX), cholesterol and PK11195 show decreased binding 
affinity towards A139T compared to wildtype RsTspO. The publication in the same 
year of the structure of A147T mTSPO in complex with PK11195 however showed 
contradictory results to those explained above (Jaremko et  al. 2015b). This study 
shows that the structure of TSPO is only perturbed on TM1 and in the loop helix. The 
CRAC motif is instead seen to be unaffected by the mutation, both in ligand bound 
and apo-TSPO structures. Jaremko and colleagues criticise the crystal structure of 
WT RsTspO as showing artificial characteristics due to crystal packing and justify 
this by observing that BcTspO, A139T RsTspO, WT and A147T mTSPO all share the 
same topology with regard to certain conserved residues involved in ligand binding. 
The differences in the other conserved residues are attributed to evolutionary modifi-
cations, validated by the fact that PK11195 has a 1,000-fold lower affinity to bacterial 
TspO compared to mTSPO. Moreover, its binding affinity to mTSPO is not perturbed 
by the polymorphism unlike with second-generation ligands (Owen et  al. 2011), 
which validates Jaremko’s findings. It is also fundamental to consider that bacterial 
TspO proteins are less relevant models compared to mTSPO with regard to choles-
terol binding. This is due to the CRAC motif being not strongly conserved, consistent 
with the functional irrelevance of cholesterol binding in bacterial membranes, where 
this particular lipid is not present (Gut et al. 2015). In conclusion, the authors make 
the hypothesis for which the structure perturbations caused by the A147T mutations 
impair cholesterol binding not by disrupting the CRAC structure but by impeding 
interactions with other proteins. However, alternative studies of cholesterol interact-
ing motifs have not yet been considered in regard to TSPO structure. A cholesterol 
consensus domain (CARC) has been identified as being structurally next to, and 
functionally cooperating with, CRAC domains present in TSPO, at residues  
139–146 (Fantini et  al. 2016). Additionally a cholesterol binding enhancement 
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motif  containing the A139 residue (A147 in mTSPO) has been identified in RsTspO 
(Li et al. 2015b). It is therefore tempting to hypothesise that the loss of affinity to 
cholesterol is due to the structural distortion of the alternative CARC motif. 
Nevertheless, this hypothesis is yet to be corroborated.

The last structural biology work of relevance to be published is Bacillus cereus 
TspO (BcTspO) (Guo et  al. 2015). This publication provides data regarding two 
different features of TSPO: its structure and function. Structurally, BcTspO exists in 
at least three oligomeric states, with Guo et al. (2015) providing crystal structure of 
monomeric and dimeric states, with the dimerisation interactions mostly located on 
TM2, and not TM1 or TM3. The general topology of the protein is maintained with 
regard to whole tertiary structure, with the highest structural homology found with 
A139T RsTspO, however showing significant changes in the location of conserved 
residues in remaining determined models. A noteworthy difference comes from the 
absence of significant structural changes upon binding of PK11195 (Fig. 11.1b). 
However, the focus of this work lies on the structural features interacting with PpIX, 
which was previously found to be degraded in a light- and oxygen-dependent man-
ner by both prokaryotes and eukaryotes (Ginter et al. 2013). This phenomenon was 
measured by a shift in absorbance spectrum produced by the porphyrin chemical 
group. Mutations of key tryptophan residues and a model of the A147T and addition 
of PK11195 were shown to abolish this process. The consequential suggestion made 
by this paper is that the tryptophan residues mediate the transfer of high-energy 
electrons, originating from free radicals to PpIX. This molecular mechanism could 
fundamentally provide the basis for the role of TSPO, not only linking the processes 
in porphyrin metabolism and oxidative stress regulation but also in other functions 
associated with the protein in higher metazoans.

11.3  Expression and Distribution of a Pleiotropic Protein

TSPO is expressed across the whole mammalian body, albeit with a tissue and cell- 
specific mode. As mentioned, the highest expressing tissues are those that produce 
steroids: the adrenal glands and the gonads. Within the adrenal gland, TSPO expres-
sion is limited to the cortex, the layer specifically producing steroids. In decreasing 
order of transcription, the organs are listed as follows: lung, bone marrow, kidney, 
spleen, liver, bladder, heart, pancreas, eyes, muscle, bone and brain, with the latter 
containing 2% of the adrenal’s TSPO mRNA at resting condition in mice (Anholt 
et al. 1985; Banati et al. 2014). Within the CNS, TSPO is expressed at higher levels 
in microglia and the endothelium (Cosenza-Nashat et al. 2009; Turkheimer et al. 
2015), with the localisation in neurons still being controversial. Initial findings 
showed significant binding of Ro5-4846 to olfactory neurons (Anholt et al. 1984). 
In vitro cell cultures of primary neurons (Jayakumar et al. 2002; Jordà et al. 2005; 
Karchewski et al. 2004) and neuronal cell lines (Wu et al. 2015) express TSPO at 
resting conditions. However, detailed immunohistochemical analysis demonstrated 
that during development, expression is significant in neuronal precursors but 
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strongly decreases in adult neurons, still allowing for upregulation following neuro-
nal injury (Cosenza-Nashat et al. 2009; Varga et al. 2009). Finally, the presence of 
TSPO has been confirmed in the various lineages of the immune system and is 
believed to have a strong functional role within their physiology (Cosenza-Nashat 
et al. 2009; Costa et al. 2009a; Lee et al. 2015; Zhou et al. 2014).

Subcellular localisation of TSPO has primarily found it to be located in the 
OMM, but in particular cases, it has also been observed in the nuclear membrane 
(Hardwick et al. 1999) and in erythrocytic plasma membranes (Olson et al. 1988). 
In addition, phylogenetic studies have also identified a paralogous protein, TSPO2. 
This protein most likely arose from gene duplication before the divergence between 
mammals and avians. TSPO2 is expressed in the endoplasmic reticulum and nuclear 
membranes and appears to have a much more restricted function as it has only been 
found to be responsible for cholesterol redistribution from stores to nucleus, an 
essential step in erythropoiesis (Fan et al. 2009).

The regulatory mechanisms behind the expression and activity of TSPO still 
remain to be elucidated. Nevertheless, two main pathways of activation have been 
described, as well as different negative feedback pathways. Despite the absence of 
a TATA box or CCAAT element, the promoter of Tspo, the gene coding for TSPO, 
contains tandem binding sites for the specificity proteins 1/3 (Sp1/Sp3), regulating 
the basal transcription of the gene in cooperation with the E26 oncogene homolog 
(Ets) (Giatzakis and Papadopoulos 2004; Giatzakis et al. 2007) (Fig. 11.2). However, 
various other, confirmed and putative, transcription factor binding sites have been 
identified in the promoter, in particular for signal transducer and activator of 
 transcription (STAT) 3 or activator protein (AP) 1 (Batarseh et al. 2012). TSPO’s 

Fig. 11.2 Transcriptional control of TSPO. Ets, SP1/SP3, STAT3 and AP1 can all activate (arrow) 
the promoter of TSPO. Ets and SP1/SP2 are required for basal transcription. STAT3 is activated 
downstream of the MAP kinase pathway, most notably characterised as being induced by ROS via 
PKCε. Below PPARα and NAT, activated by cAMP, can work together to inhibit binding of the 
SP1/SP3-Ets complex (round arrow), STAT3 or API to the promoter. Additionally, PPARα can 
further inhibit ROS
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best characterised transcriptional activation pathway is mediated by protein kinase 
Cε (PKCε) and controlled by ROS levels. This pathway is constitutively activated in 
MA-10 Leydig cells and inducible in nonsteroidogenic cell lines, like NIH-3T3 
fibroblasts and COS-7 kidney cells (Batarseh et  al. 2008). Phorbol-12-myristate 
13-acetate (PMA), a PKCε inducer (Fay et al. 2006; Huang et al. 2014; Keshari 
et al. 2013), was shown to activate the MAP kinase pathway and induce nuclear 
translocation of the transcription factors c-Jun and STAT3, which effected an AP1-
mediated induction of transcription (Batarseh et al. 2010). Furthermore, other ROS 
inducers have been shown to upregulate TSPO in various cell types such as cytokine 
induction in human pancreatic islets (Trincavelli et  al. 2002) and hypoosmotic 
swelling in astrocytes (Kruczek et al. 2009).

Interestingly, astrocytes provide an example of differential TSPO regulation, as 
they are also susceptible to estradiol-induced regulation of the protein’s activity 
(Chen et al. 2014). As mentioned earlier, hormones can modulate TSPO expression. 
This can take place in a wide variety of contexts, for example, in the activation of the 
HPA axis, during the oestrous cycle or under the control of sex hormones like estra-
diol (Bitran et al. 1998; Mazurika et al. 2009). However, the precise nature of this 
process still remains unclear, with a characterised activation pathway of TSPO 
expression that does not directly interfere with transcription. This pathway starts 
with a hormone binding to a membrane receptor, for example, estradiol on the oes-
trogen receptor α (ERα) (Chen et al. 2014). The hormone then activates adenylyl 
cyclase-1, which catalyses the production of the secondary messenger cyclic adenos-
ine monophosphate (cAMP). The latter induces the relocation of acyl-coenzyme A 
binding domain containing protein (ACBD) 3 from the Golgi apparatus to the mito-
chondrion, the phosphorylation of protein kinase A (PKA) and its recruitment to 
ACBD3 (Fan et al. 2010). The ACBD3-PKA complex in turn phosphorylates TSPO, 
increasing its steroidogenic capacity (see Fig. 11.3). This surge in activity is thought 
to justify the higher binding observed in hormone-stimulated tissues. This hypothesis 
is further supported by the observation that ACTH does not induce TSPO transcrip-
tional increase in Leydig cells (Boujrad et al. 1994). However, the PKCε pathway in 
this cell line is already activated and therefore not inducible, which might not be the 
case for non-cancerous cell types. In these cell types, phosphorylation by the recruited 
PKA pools on the mitochondria could cause VDAC1 pore closure inducing, via the 
non-accumulated Ca2+, a NADPH oxidase (NOX) 5-mediated increase in ROS 
which, through PKCε, establish a positive feedback loop to increase TSPO expres-
sion further (Gatliff J, East D et al. in press). Furthermore, the upregulation could be 
mediated by compensatory post-translational mechanism, like the cAMP-induced 
internalisation of TSPO into the OMM by metaxin 1 (Rone et al. 2009).

Negative feedback mechanisms for regulation of TSPO expression have also been 
identified, involving the cAMP-dependent natural antisense transcript (NAT) (Fan and 
Papadopoulos 2012) and the peroxisome proliferator-activated receptor (PPAR) α, 
which are also activated by cAMP a, reducing ROS levels whilst also impairing tran-
scription factor binding (Boujrad et al. 1994; Gazouli et al. 2002; Vega et al. 2000).

Having framed the complexity and also controversy surrounding TSPO via the 
increased understanding of its structure and expression, light is likely to be shed on 
how the protein associates with a wide array of cellular functions and pathologies, 
as described below.

11 The 18 kDa Translocator Protein (TSPO): Cholesterol Trafficking and the Biology…



296

11.4  The Molecular and Cellular Functions of TSPO

TSPO is involved in a wide variety of different cellular processes revolving around 
mitochondrial function. A few examples are oxidative stress (Gatliff and Campanella 
2015), mitophagy (Gatliff et  al. 2014), apoptosis (Werry et  al. 2015), porphyrin 
metabolism (Selvaraj and Stocco 2015) and steroidogenesis (Midzak et al. 2015). 
This variety of functions is most likely mediated by the interaction with the proteins 
to which TSPO is known to bind (Fig. 11.4). The most prominent of which are, 
based on the available literature, the VDAC1 (McEnery et al. 1992), the steroido-
genic acute regulatory protein (StAR) (Miller and Auchus 2011), the DBI/ACBD1 
and ACBD3 (Fan et al. 2010; Guidotti et al. 1983; Li et al. 2001), the ANT (McEnery 
et al. 1992) and the 14-3-3γ (Aghazadeh et al. 2012) and PKCε (Aghazadeh et al. 
2014). TSPO’s vast range of interacting partners, its widespread and variable 
expression across cell types and species, and the use of varying pharmacological 
agents in its study have created confusion surrounding its physiological role and 

Fig. 11.3 Post-translational modulation of TSPO. As characterised in astrocytes, estradiol can 
increase cAMP through ERα, which then recruits ACBD3 to the mitochondria where it acts as an 
adaptor for PKA.  The ACBD3-PKA complex can then phosphorylate TSPO.  Phosphorylated 
TSPO displays increased steroidogenic activity, which then feeds back to estradiol, creating a posi-
tive feedback loop. cAMP can also control TSPO levels by regulating the internalisation of the 
protein into the OMM
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suggest that it may hold a highly context-dependent function. However, there are a 
few molecular mechanisms which the authors hypothesise as underlying TSPO’s 
function and are listed below.

Steroidogenesis. Steroidogenesis begins when cholesterol is initially catalysed 
into pregnenolone by a specific isoform of cytochrome P450. Different tissue- 
dependent pathways can then synthesise specific steroids, which in turn exert an 
effect as hormones on target tissues (Miller and Auchus 2011). This process takes 
place in a tissue-dependent manner, according to the distribution of the pathway- 
specific enzymes (Miller and Auchus 2011), with the presence of the precursor in 
the mitochondria being the rate-limiting factor. Cholesterol is carried from intra-
cellular stores, or low density lipoproteins (LDL), to the OMM by StAR and is 
then translocated to the inner mitochondrial membrane. Then it is catalysed into 
 pregnenolone, by a translocator complex, or “transduceosome”, constituted of 
StAR, VDAC1, ANT and TSPO (Krueger and Papadopoulos 1990; Liu et al. 2006; 
Papadopoulos et  al. 1997a). Most of the proteins known to interact with TSPO 
have been shown to regulate its steroidogenic capacity. 14-3-3ε forms a complex 
with VDAC1, therefore inhibiting steroidogenesis. DBI, later renamed ACBD1 

Fig. 11.4 Molecular functions of TSPO. With VDAC1, StAR and ANT, TSPO forms the transdu-
ceosome, which is required for putative mitochondrial cholesterol import function associated to 
TSPO (arrow). This complex can be inhibited by 14-3-3Ƴ at different sites (round arrow), whilst 
14-3-3Ɛ binds directly to VDAC1 to do so. ACBD1 can instead enhance TSPO activity by direct 
binding. The tryptophan residues in the active site of TSPO can mediate free radical transfer to 
PpIX, leading to ROS neutralization. TSPO can modulate VDAC1 gating, thereby controlling Ca2+ 
entry into the mitochondria, which can modulate mPTP formation. Additionally, metabolite trans-
port by VDAC1, again under control by TSPO, can modulate the Krebs cycle. The metabolites of 
the Krebs cycle can either be used for porphyrin production or feed into the oxidative phosphoryla-
tion (OXPHOS) process, leading to ATP production and ROS formation. TSPO can modulate 
haeme synthesis in two different ways: by regulating the availability of porphyrin through Krebs-
cycle control or indirectly by mediating the porphyrin-dependent ROS neutralisation process. This 
link has not been fully investigated (dotted arrow). Lastly, TSPO can also block mitophagy
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due to its structural motif, binds directly and potentiates the effect of TSPO (Alho 
et  al. 1991; Gray et  al. 1986). Additionally, fragments of DBI, or endozepines, 
have been shown to physiologically act in a similar fashion (Besman et al. 1989; 
Papadopoulos et  al. 1991). As already mentioned, ACBD3 mediates a PKA-
induced activation of TSPO. 14-3-3γ binds to the transduceosome to inhibit steroid 
formation (Aghazadeh et al. 2012).

Despite the intimate relationship between TSPO and steroidogenesis, global 
genetic mice ablation of TSPO showed no genetic lethality and only minor pheno-
typic differences in the immune system (Banati et al. 2014; Tu et al. 2014). These 
results raised the fundamental question whether TSPO is actually necessary for the 
functions associated with it or whether previous results were due to the unspecific 
action of its ligands. While this might be true for cases in which the ligands were 
used at micromolar concentrations, original studies have shown that the affinity of 
PK11195 reaches nanomolar concentration (Blahos et al. 1995; Campanella et al. 
2008; Papadopoulos et al. 1990). Furthermore, Banati et al. (2014) showed the PET- 
specific ligand dosages did not result in any unspecific binding in TSPO KO mouse 
tissues. However, Tu et al. (2014) reported basal and ACTH-stimulated steroid pro-
duction to be unmodified by the absence of the TSPO.  This was supported by 
another publication which showed TSPO KO MA-10 Leydig cells were as respon-
sive to PK11195 treatment as the wild-type cells (WT) (Tu et al. 2015). However 
these results have been recently contradicted by data on mice with conditional KO 
in steroidogenic cells driven by the nuclear receptor 5 subfamily a 1 (Nr5a1) tran-
scription factor, which display a defect in ACTH-induced steroid production (Fan 
et al. 2015). In support of this model, we have found the first publication reporting 
genetic disruption of TSPO in steroidogenesis, carried out in an R2C Leydig tumour 
cell line (Papadopoulos et al. 1997b). Interestingly, in this model the mutation is not 
homozygous, as the cell type in question is polyploidic, containing more than two 
homologous sets of chromosomes. In this model the absence of a complete set of 
TSPO genes would create a partial loss of function, but a homozygous mutation 
would trigger a redundant pathway to fulfil the function normally carried out by 
TSPO, therefore explaining these apparently contradicting results. This hypothesis 
is supported by the observation that the A147T human polymorphism on the TSPO 
gene is responsible for a spectrum of anxiety-related disorders by interfering with 
microglial neurosteroid production (Colasanti et  al. 2013; Costa et  al. 2009a, b; 
Owen et  al. 2012). This microglial-specific impairment caused by mutations in 
TSPO is additionally supported by the KO mice model published by Banati et al. 
(2014), in which microglia is the only cell type reported to show aberrant behaviour. 
Furthermore, a role for TSPO in psychiatric disorders is strengthened by the finding 
of a new generation highly specific ligands successfully used to produce anxiolytic 
effects by increasing the production of neurosteroids (Rupprecht et al. 2009).

Another possible explanation for the absence of predicted phenotype in the 
TSPO KO mouse associates with its function as a stress-response protein. The 
mouse genetic KO studies did not contain analysis of the efficiency of the TSPO- 
void system against stress; this will most definitely be the next step as the current 
wealth of data points to a role for this protein in stress physiology. Lastly, it is 
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important to keep in mind that genetic KO models in mammalian systems are not 
always suitable to test mitochondrial proteins. In contrast to murine studies, genetic 
inactivation of TSPO in Drosophila melanogaster has shown to be protective against 
apoptotic stimuli, neurodegeneration and ageing (Lin et al. 2014). This same result 
occurred in the search for a function for the PTEN-induced putative kinase 1 
(PINK1), which is a mitochondrial protein responsible for initiating stress-induced 
mitophagy (Lazarou et al. 2015). Whilst the importance of PINK1 for mitochondrial 
physiology is confirmed, mouse KO models of PINK1 showed only a mild pheno-
type (Gautier et al. 2008) in comparison to the D. melanogaster model (Clark et al. 
2006). Therefore, mouse models of genetic KO provide an excellent control for 
unspecificity of ligands; however they are not sufficient to refute previous studies on 
mitochondrial functions.

Porphyrin metabolism. Porphyrins are a class of heterocyclic macrocycle organic 
compounds, which are precursors to a wide variety of molecules, like chlorophyll 
and haemoglobin. Porphyrins are also highly reactive and induce oxidative stress 
when accumulated in the cell. Porphyrin is an endogenous ligand of TSPO whose 
relationship has been conserved from bacteria to metazoans. In the aforementioned 
structural biology study with BcTspO, it was shown that the tryptophan residues in 
the active site of the protein could mediate a free radical transfer to PpIX (Guo et al. 
2015). This ROS neutralisation effect was found to be fundamental in counteracting 
porphyrin toxicity in prokaryotes, as well as in the human liver, haematopoietic 
system and osteoblasts (Bloomer 1998; Carayon et  al. 1996; Ginter et  al. 2013; 
Rosenberg et al. 2014). This function acquires paramount importance in plant sys-
tems, with studies on Arabidopsis thaliana, and the moss Physcomitrella patens, 
providing evidence regarding TSPO’s role in redox homeostasis and stress adapta-
tion (Frank et al. 2007; Lehtonen et al. 2012; Vanhee et al. 2011). P. patens upregu-
lates TSPO in response to fungal infection, with a concomitant increase in the 
expression of ROS-producing proteins as part of the antimicrobial oxidative burst. 
In TSPO KOs of P. patents, oxidative stress is observed at resting condition, with a 
constitutive upregulation of ROS-producing proteins, excluding NADPH oxidase 
(NOX). The latter is an important group of cytoplasmic ROS producers to which 
this study provides one of the few published links between TSPO and NOX to date, 
with fundamental ramifications on the mechanism of ROS regulation that will be 
discussed later. In A. thaliana, abscisic acid-induced stress also stimulates TSPO 
expression, which results in degradation of accumulated porphyrins via the classical 
eukaryotic autophagy pathway (Vanhee et al. 2011). Lastly, genetic interference of 
TSPO expression in Danio rerio and Gallus gallus domesticus demonstrates its 
essential role in haeme production, and erythropoiesis, which is not observed in 
mice (Nakazawa et al. 2009; Rampon et al. 2009; Zhao et al. 2015).

The novel TSPO-associated processes. TSPO has in fact been linked to various 
other aspects of mitochondrial physiology, like autophagy, respiration, oxidative 
stress and Ca2+ transport. A prominent hypothesis which has recently arisen from 
the literature relates these functions to the interaction of TSPO and VDAC1. The 
latter is a large OMM channel, with a prominent β-barrel structure and a small inter-
nal helix working as a plug that can control the travel of metabolites and Ca2+ across 
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the mitochondrial membranes. By controlling the travel of Krebs cycle substrates 
and Ca2+, VDAC1 can simultaneously regulate different processes of mitochondrial 
physiology, such as ROS production, ATP production, mitophagy and apoptosis 
(Lemasters and Holmuhamedov 2006; Rizzuto et al. 2012; Shoshan-Barmatz et al. 
2015; Ujwal et al. 2008).

VDAC1 conductance is also modulated by kinases (Sheldon et  al. 2011), an 
action thought to be exploited by TSPO as a mean to control its gating. TSPO is 
believed to control VDAC1 gating by differential expression, with a high TSPO to 
VDAC ratio facilitating a closed state. When abundant, the 18 kDa protein allows 
higher phosphorylation of VDAC by PKA by providing a larger docking area for the 
kinase, a process mentioned in Sect. 3. Indeed, VDAC1 conductance of Ca2+ has 
been shown to be modulated by a TSPO ligand in rat heart mitochondria (Ct et al. 
2008); unpublished work within our research group has shown that genetic altera-
tion of TSPO levels controls VDAC1-mediated Ca2+ fluxes (Gatliff J, East D et al. 
in press). The TSPO-VDAC interaction is likely relevant to the search of the pro-
tein’s function for different reasons. Firstly, the existence of a highly inducible pro-
tein that can control Ca2+ entry into the mitochondria provides evidence for the 
dynamic state of mitochondrial Ca2+ regulation. Moreover, this regulatory function 
unravels the intimate relation between TSPO and stress response. Electron micros-
copy experiments show that genetic overexpression of TSPO, in the absence of 
other stressors, damages the ultrastructure of the mitochondrion and decreases cris-
tae number. Furthermore, it was shown to increase basal levels of ROS and impair-
ing FCCP-induced mitophagy, which “recycles” damaged mitochondria (Gatliff 
et al. 2014). This work brings to light the nature of the TSPO, which appears to 
function as a main regulatory switch for the cell to block physiological mitochon-
drial functions and redirect the organelle to stress-directed metabolism. Indeed, this 
hypothesis can potentially explain the apparent contradictory conclusions of the 
protein’s importance for its associated processes. Therefore, to better comprehend 
the functions described below, the interaction between TSPO and VDAC1 and the 
stress-induced nature of the function must be taken into account.

The mPTP culprit. A vast quantity of literature links TSPO with the mitochon-
drial permeability transition pore (mPTP). The latter is a large structure spanning 
both mitochondrial membranes that form under conditions of mitochondrial Ca2+ 
overload, mitochondrial oxidative stress, adenine nucleotide depletion and elevated 
phosphate concentrations, allowing for the release of cytochrome c and thereby 
initiating the apoptotic cascade (Halestrap 2009). Structurally, the pore has not yet 
been completely defined, as it could be potentially made up from opportunistically 
formed complexes; however it is known to be closed by the protein cyclophilin-D 
and the pharmacological agent cyclosporin A. TSPO was initially hypothesised to 
form a pore in complex with VDAC1 and ANT, which is supported by a vast number 
of pharmacological studies (Veenman et al. 2007). Furthermore, the high expression 
of the protein in different cancers, for example, breast cancers and glioblastomas, 
also credits this hypothesis (Hardwick et  al. 1999; Werry et  al. 2015). However, 
studies performed with ligands used high micromolar concentrations, which can 
cause TSPO-independent effects – an aspect to be revisited in the following section. 
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Moreover, independent studies showed that ANT was not part of the mPTP but 
rather that dimers of the mitochondrial ATP synthase constitute the structural basis 
of the pore (Giorgio et  al. 2013; Kokoszka et  al. 2004; Sileikyte et  al. 2011). 
Therefore, the current consensus is that TSPO and VDAC1 and ANT are not struc-
turally part of the mPTP but can regulate its opening via control of Ca2+ and adenine 
nucleotide channelling.

Production and regulation of ROS. ROS are group of molecules containing an 
oxygen atom which either already harbours an unpaired electron or can easily obtain 
one. The most commonly known ROS are the superoxide anion, O2

−, hydrogen 
peroxide, H2O2, and hydroxyl radical, OH. Within the cell, ROS can react with mac-
romolecules of many kinds to generate dysfunctional products, thus inducing stress 
(Court and Coleman 2012; Dias et al. 2013; Ghosh et al. 2011). There is general 
agreement within the scientific community that ROS is mainly produced within 
mitochondria as part of the leakage process within the electron transport chain 
(ETC) that can lead to incomplete reduction of molecular oxygen (Murphy 2009). 
ROS production at low physiological levels is used by the mitochondrion to modu-
late cell function (Dröge 2002), and healthy levels of ROS are maintained by a 
variety of antioxidant systems, such as peroxiredoxins and glutathione (GSH) (Dias 
et al. 2014; Murphy 2009). Furthermore, ROS is also physiologically produced in 
the cytoplasm, by either NOX (Bedard and Krause 2007) or xanthine oxidases 
(Harrison 2002), even though they are believed to contribute less than mitochondria 
towards total cellular ROS levels. TSPO regulates ROS in different ways. By 
decreasing VDAC1 gating, the protein can decrease the rate of mitochondrial respi-
ration and the consequent ETC-mediated ROS production. As mentioned previ-
ously, through participating in the porphyrin metabolism, TSPO can also neutralise 
the ROS produced by PpIX, although data suggests that stress-induced TSPO 
upregulation decreases binding rather inducing further neutralisation (Lehtonen 
et al. 2012; Vanhee et al. 2011). A spike in NOX upregulation is also observed upon 
TSPO upregulation in P. patens, as a tool to damage invading fungal pathogens. 
NOX is an important class of cytoplasmic ROS producers used by the mammalian 
immune system for a variety of purposes, including host defence (Bedard and 
Krause 2007). NOX5 is an isoform that is activated by a cytoplasmic Ca2+ via 
calmodulin-dependent kinase II (Pandey et  al. 2011). Work by the Campanella 
group highlights the presence of this mechanism in neuronal excitotoxicity. 
Overexpression of TSPO can decrease VDAC1-mediated Ca2+ uptake into the mito-
chondrion, thereby activating NOX5 and inducing oxidative stress (Gatliff J, East D 
et al. in press). This dichotomy between oxidative bursts in host defence and oxida-
tive stress in neurons provides a hint as to the low TSPO expression levels in neu-
rons at physiological conditions. 

Mitochondria-targeted autophagy. The link between TSPO and autophagy has 
also recently been unveiled. The latter is a process in which portions of the cyto-
plasm, or entire organelles, are sequestered by a double membrane and transported 
to the lysosome for degradation (Lemasters 2005; Matic et al. 2015). Autophagy can 
be unselective, to sustain cell metabolism during starvation, or targeted to specific 
organelles, like mitochondria, or even exogenous microorganisms. Nevertheless, 
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upstream initiator proteins, like microtubule-associated protein light chain 3 (LC3) 
(Tanida et al. 2004), are conserved across eukaryotes and between different types of 
autophagy (Randow and Youle 2014). As mentioned above, mitophagy induced by 
FCCP, an ionophore that shuttles protons across the membrane and causes instant 
membrane depolarisation, is impaired by TSPO in different mammalian cell lines 
via a ROS and VDAC1- mediated mechanism (Gatliff et al. 2014). In A. thaliana, 
TspO bound to porphyrin is degraded by autophagy via a putative direct interaction 
with autophagy-related protein 8 (Atg8), an ortholog of LC3, through a putative 
Atg8-interacting motif (Vanhee et al. 2011). In natural killer cells, TSPO expression 
has been demonstrated to disrupt human immunodeficiency virus (HIV) replication 
by simultaneously inducing a low oxidative state in the ER and the ER-associated 
degradation (ERAD) pathway, which together impair folding and induce degrada-
tion of a fundamental protein of the HIV structural scaffold (Zhou et al. 2014).

TSPO in the homeostasis of cellular energy. First of all, VDAC1 gating can con-
trol a switch from respiratory ATP production to glycolysis, named Warburg effect 
in cancer cells (Maldonado and Lemasters 2012). Consequently, TSPO upregula-
tion can be hypothesised to induce a proliferative state with higher glucose con-
sumption and usage of glucose metabolites for anabolic functions. Furthermore, a 
whole organism zebrafish embryo screening for activators of gluconeogenesis has 
shown that TSPO ligands, especially PK11195, are potent “hits” (Gut et al. 2013). 
PK11195 was seen to upregulate different key inducers of the gluconeogenic fasting 
response, like phosphoenolpyruvate carboxykinase (PEPCK), as well as 5′-ami-
nolevulinate synthase 1 (ALAS-1), the rate-limiting enzyme in the production of 
haeme. The mechanism via which TSPO can be linked to these processes requires 
an insight into how haeme can control metabolic pathways. Gluconeogenesis and 
haeme synthesis compete with aerobic respiration for Krebs cycle intermediates: 
PEPCK mediates the rate-limiting step in gluconeogenesis, i.e. the catalysis of a 
Krebs cycle intermediate to phosphoenolpyruvate (Gut et al. 2013), and ALAS-1 
regulates haeme biosynthesis by catalysing succinyl CoA (Ponka 1999). These 
pathways are positively regulated during fasting by PPAR-gamma coactivator-1α 
(PGC-1α), a master regulator of mitochondrial biogenesis (Handschin et al. 2005; 
Puigserver et al. 2003). On the other hand, in fed conditions, haeme levels oscillate 
according to circadian rhythms and control Rev-Erbα, a transcription factor which 
suppresses gluconeogenesis, both functionally and physically dependent on the 
molecule (Yin et al. 2007). The putative mechanism with which PK11195 could 
induce gluconeogenesis would be as follows. PK11195, as described by Guo et al. 
(2015) in the aforementioned structural biology study, shows competitive binding 
with porphyrins on the binding site for TSPO. Additionally, the latter seems to be 
required for haeme biosynthesis, at least in zebrafish and chicken. If PK11195 dis-
places porphyrin binding or causes haeme synthesis to be defective, the action of 
Rev-Erbα would be inhibited, inducing a fasting state. Other publications have re- 
enforced the involvement of TSPO in energy regulation: in TSPO KO Leydig cells, 
a shift in fatty acid oxidation was observed (Tu et al. 2016), while TSPO ligands, 
oppositely to genetic TSPO downregulation, were shown to increase glucose uptake, 
transcription of PGC-1α and release of anti-inflammatory adipokines in adipocytes 
(Li and Papadopoulos 2015).
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TSPO and its interplay with inflammation. Inflammation is defined as an adap-
tive response that is triggered by noxious stimuli and conditions, presumably devel-
oped with aim of restoring homeostasis (Medzhitov 2008). Inflammatory diseases 
are in fact thought to develop following misregulation of inflammatory pathways, 
with consequential untargeted effects and prolongation of a non-homeostatic state. 
Perhaps, this concept is key to understanding the tight relationship between the 
protein, disease and wide ranging of positive effects produced by the ligands. 
Nevertheless, despite overwhelming evidence supporting a link between the inflam-
mation and TSPO, a general consensus is still missing on whether the protein is 
inflammatory or purely functioning as a marker for the process. The strong upregu-
lation associated with neuroinflammation, and the influence ROS levels have on 
TSPO transcription, highlights the role this protein plays as a consequence to injury. 
More detailed investigations showed that in a monocytic cell line, Ro5-4846 attenu-
ates ATP-induced formation of the nod-like receptor family, pyrin domain contain-
ing 3 (NLRP3) inflammasome (Lee et al. 2016). The TSPO binding ligands were 
also found to inhibit pro-inflammatory cytokine release in BV2 cells, a murine 
microglial cell line, and in vivo in mice. Most importantly, the same study showed 
that TSPO expression negatively correlates with markers of neuroinflammation 
(Bae et al. 2014). Furthermore, XBD173, a highly selective ligand used to demon-
strate the GABAergic synaptic inhibition of neurosteroid production (Rupprecht 
et al. 2009), was also shown to downregulate retinal microglial inflammation as well 
as its phagocytic capacity (Karlstetter et al. 2014). Despite the work of Bae et al., it 
is still unclear whether these functions are dependent on the anti-inflammatory 
effect of steroids or on the other functions associated with the protein. Nevertheless 
it is important to take into consideration that from the point of view of the mitochon-
drion, upregulation of TSPO is indeed an inflammatory event, as it promotes a 
switch to stress-related, and therefore non-homeostatic, processes like gluconeo-
genesis, glycolytic metabolism and various other functions elaborated above.

11.5  The Role of TSPO in Molecular and Cellular 
Dysfunctions

The molecular functions described above should now enable the reader to more eas-
ily comprehend the connection between TSPO and pathological conditions. While 
the literature presents a wide range of explanations for the protective actions of 
TSPO-targeting pharmacological ligands, we will attempt to only refer to those 
functions mentioned above.

TSPO is expressed in a range of different cancers, such as breast cancer 
(Hardwick et al. 1999), glioblastoma (Werry et al. 2015), prostate cancer (Galiègue 
et al. 2004), endometrial carcinoma (Batra and Iosif 2000) and oesophageal cancer 
(Sutter et al. 2002).
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TSPO may not only serve as a biomarker in these cancers, with its expression 
15-fold higher in glioblastomas compared to normal brain tissue, for example, but 
levels of TSPO expression within the different cancer types have also been corre-
lated with tumorogenicity (Galiègue et al. 2004; Hardwick et al. 1999; Janczar et al. 
2015; Veenman et al. 2004). Studies investigating TSPO as a potential target for 
therapeutic treatment have focused on breast cancer and glioblastomas finding that 
apoptosis induced by cobalt chloride or erucylphosphohomocholine, are inhibited 
by ligand treatment (Veenman et al. 2014; Zeno et al. 2009). As cancer cells upregu-
late anti- apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), interventions have 
focused on initiating cell death. One mechanism through which that can be achieved 
is the release of cytochrome c, an inducer of apoptosis, from the mitochondria in 
response to the permeabilisation of its membrane. By facilitating mPTP opening in 
tumour cells, which overexpress TSPO, TSPO-inactivating ligands can specifically 
target these cells, exemplifying the targeted therapy mechanism. It is worth men-
tioning that different ligands can have opposing effects on the cancer phenotype. 
This is not only caused by the fact that different ligands bind to different sites within 
the protein, e.g. Ro5-4846 in comparison to the PK11195 binding described above 
(Farges et al. 1994), but also by unspecific binding. PK11195 has been observed to 
exert its effect independently of TSPO knockdown in HeLa cells (Gonzalez-Polo 
et al. 2005), with a potential mechanism mediated via the F1Fo-ATPase (Seneviratne 
et al. 2012). Regardless, TSPO targeting produces an anti-apoptotic effect also by 
acting on proliferation. Studies in C6 glioma cells have shown that TSPO knock-
down causes a decrease in proliferation, whilst overexpressing TSPO has the oppo-
site effect, potentiating proliferation (Rechichi et al. 2008). One of the key features 
of cancer cell metabolism is in fact the focus of ATP production on the glycolytic 
pathway. The latter is less effective in energetic terms compared to the mitochon-
drial Krebs cycle and electron transport chain but can function anaerobically and 
provide carbon-based compounds as biomass for proliferation (Lemasters and 
Holmuhamedov 2006; Shoshan-Barmatz et  al. 2015). Alteration of the TSPO- 
VDAC interactions could potentially revert the Warburg effect by promoting mito-
chondrial respiration.

TSPO is also likely to be involved in neurodegenerative conditions. As men-
tioned above, expression of TSPO is increased in glia cells following a wide range 
of brain injuries. These can include progressive disorders such as MS, amyotrophic 
lateral sclerosis, Alzheimer’s disease (AD), PD and Huntington’s disease but also 
acute traumas such as stroke, traumatic brain injury, gliomas and HIV encephalitis 
(Cagnin et al. 2007; Cosenza-Nashat et al. 2009; Gavish et al. 1999; Rupprecht et al. 
2010). In a majority of these disorders, neuroinflammation plays a role, believed to 
lead to the symptoms observed in the patients. Whilst in AD, for example, neurode-
generation seems to predispose to neuroinflammation, diseases like MS are charac-
terised by an initial inflammatory event initiating neurodegeneration (Naegele and 
Martin 2014). The relationship between neuroinflammation and neurodegeneration 
is not fully characterised as of yet. However, there is strong evidence for a positive 
feedback mechanism between the two (Rupprecht et  al. 2010). Not only has  
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TSPO upregulation been observed in vivo in these diseases, but TSPO ligands have 
also been shown to be widely protective against the underlying pathology in a wide 
number of experimental models of CNS diseases (Da Pozzo et  al. 2015), even 
though the exact mechanisms of action have not been fully elucidated yet. The role 
in steroidogenesis could suggest an anti-inflammatory effect of steroids on microg-
lia. Additionally, since TSPO has been observed in vivo in injured neurons (Cosenza-
Nashat et al. 2009; Palzur et al. 2016), its wider role in neurodegeneration, by the 
improvement of mitochondrial physiology, can be imagined. Work within the 
Campanella group is elucidating the role of the various molecular mechanisms in an 
in  vitro model of PD: inhibition of mitophagy and induction of oxidative stress 
appear potential mechanisms for the neuroprotective action of the TSPO ligands.

A wide number of studies have also linked TSPO with cardiovascular diseases 
(Morin et al. 2016; Qi et al. 2012; Veenman and Gavish 2006). Firstly, TSPO ligands 
have shown to be protective against ischemia and reperfusion (I/R). I/R damage is 
caused when cells are insufficiently supplied with oxygen leading to a disruption of 
ATP synthesis and subsequently cell membrane depolarisation. Once the tissue is 
reperfused, however, a burst of mitochondrial ROS production is caused as oxygen 
becomes available once again. The formation of the mPTP following this oxidative 
burst successively activates the apoptotic pathway. TSPO ligands, by impairing 
mPTP formation, can block this process, therefore conferring protection. I/R can 
occur in cardiac cells during myocardial infarction, which is responsible for the 
largest part of cardiovascular mortality, or during stroke. TSPO ligands have also 
been found to reduce infarct size and other cardiovascular malfunctions like arrhyth-
mia and cardiac hypertrophy (Qi et al. 2012). A link between TSPO and diabetes, or 
other disorders of energy regulation, is provided by the mechanistic link with glu-
coneogenesis and cellular energy regulation. By inducing gluconeogenesis, TSPO 
can revert insulin insensitivity and glucose tolerance, as demonstrated by a zebrafish 
study (Gut et al. 2013). Furthermore, in vitro work in adipocytes has shown that 
TSPO ligands can improve the inflammatory status and induce similar outcomes (Li 
and Papadopoulos 2015). Lastly, work carried out in TSPO KO Leydig cells has 
shown a shift to fatty acid oxidation, which, if fine-tuned, could be used by ligand 
treatment for disorders of energy regulation (Tu et al. 2016).

11.6  Conclusions

By concomitantly pinpointing the past notions and informing on the most recent 
findings, this chapter provides the reader with an organic overview on the available 
knowledge on this fascinating protein. Standing as a prime element in cellular and 
systemic functions as well as dysfunctions, TSPO has been historically exploited as 
a target for novel biochemically designed diagnostics and therapeutics. Its high 
degree of conservation, the peculiarity of the structure and role in cholesterol traf-
ficking depict TSPO as a core element in mitochondrial homeostasis and 
signalling.
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Chapter 12
Protein Import Channels in the Crossroads 
of Mitochondrial Function

Ma Su Su Aung, Ruth Hartke, Stephen Madamba, Oygul Mirzalieva, 
and Pablo M. Peixoto

12.1  Introduction

Exchange of information is a central theme in biology because it underlies the evolution 
of symbiotic interactions. Conceivably, the most relevant of such interactions was the 
eukaryotic merger that led to the origin of mitochondria – commonly referred to as the 
power plants of almost every eukaryotic cell (Sagan 1967; Schwartz and Dayhoff 1978; 
Gray et al. 1999; Gray 2015). Information exchange between mitochondria and the cell 
is in the form of ions, metabolites, amino acids, nucleic acids, and proteins. The benefits 
of this particular exchange include regulation of metabolism, stress response, division, 
differentiation, survival, and death.

Without exception, exchanged molecules need to cross two physical boundaries, 
the inner and the outer mitochondrial membranes. Interestingly, the lipid-protein 
composition of the outer mitochondrial membrane resembles that of related pro-
karyotic ancestors. For example, a homolog protein present in the plasma mem-
brane of virtually all prokaryotes is the most abundant protein in the outer membrane 
of mitochondria. Pioneer investigators in the field continue to name it the mitochon-
drial porin, modernly known as the voltage-dependent anion channel (VDAC). 
Channels like VDAC form gateways for exchange of signaling molecules between 
mitochondrial and the other cellular compartments. The proteinaceous components 
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of these channels, like over 98% of all mitochondrial proteins, have to be imported 
from the cytoplasm. We present in this chapter an updated review of the protein 
import pathways and of how they enable mitochondrial biogenesis and control of 
cellular metabolism.

12.2  Protein Import Pathways

With striking homology to bacterial transport systems, the mitochondrial protein 
import machinery is highly conserved in evolution (Hoogenraad et al. 2002; Dolezal 
et  al. 2006). However, the machinery grew more complex after the eukaryotic 
merger – it is estimated that approximately 40 different proteins contribute to pro-
tein import. This number is likely to grow: we estimate that ~17% of the proteins 
recently identified in mitochondrial fractions, many of which were confirmed by 
fluorescence microscopy (Pagliarini et al. 2008; Calvo et al. 2016), have unknown 
functions. Nonetheless, several import complexes mediate the transfer of nuclear- 
encoded proteins to their final destination within mitochondria (Neupert and 
Herrmann 2007; Chacinska et al. 2009; Schmidt et al. 2010) (Fig. 12.1). The first 
import gateway to be crossed by virtually all proteins entering mitochondria is the 
translocase of the outer membrane (TOM complex). Downstream import pathways 
diverge from this point. (1) Once in the intermembrane space, proteins harboring 
β-barrel transmembrane domains are chaperoned (by Tim9-Tim10 and Tim8- 
Tim13) toward the sorting and assembly machinery (SAM complex) in the outer 
membrane. (2) Matrix-destined proteins are freighted across the outer and inner 
membranes in a dynamic interlock between the TOM complex and the translocase 

Fig. 12.1 Protein import pathways into mitochondria. The diagram indicates the protein import 
pathways indicated with dotted lines into each one of the mitochondrial subcompartments: the 
outer membrane (OM), the intermembrane space (IMS), the inner membrane (IM), or the matrix. 
The numbers represent the distinct pathways further described in the text
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of the inner membrane TIM23. The process requires binding of the presequence 
translocase-associated motor (PAM) to the matrix side of TIM23. (3) Alternatively, 
the small Tim chaperones escort the transfer of a different subset of proteins to the 
translocase of the inner membrane TIM22. This particular translocase releases 
multi-spanning proteins into the inner membrane. The mechanism of such release 
remains to be determined (Peixoto et  al. 2007). (4) In some cases, the transport 
through TOM-TIM23 is disrupted, and TIM23 instead releases the protein into the 
inner membrane (Botelho et al. 2011). (5) In a similar fashion, a study suggests that 
the TOM complex is competent for lateral release of proteins into the outer mem-
brane (Harner et al. 2011), although it remains to be demonstrated if this alternative 
pathway is undertaken under physiological conditions by outer membrane proteins. 
(6) The mitochondrial import machinery (MIM) facilitates the insertion of outer 
membrane proteins containing multiple α-helical transmembrane segments (Becker 
et al. 2011; Dimmer et al. 2012). In addition, Mim1, a component of the MIM com-
plex, participates in the biogenesis of some outer membrane proteins anchored via 
a single N-terminus α-helix (Becker et al. 2008; Hulett et al. 2008; Popov-Celeketic 
et al. 2008). (7) In a different sorting route, the oxidase and assembly (OXA) com-
plex aids insertion into the inner membrane of proteins synthesized in the matrix 
(Hell et al. 1998). (8) Finally, the mitochondrial intermembrane space transport and 
assembly machinery (MIA complex) aids the proper folding of proteins with cyste-
ine motifs that are either destined to the intermembrane space (Chacinska et  al. 
2004), the inner membrane (Darshi et al. 2012; Wrobel et al. 2013), or the matrix 
(Zhuang et al. 2013; Longen et al. 2014).

12.3  Regulation of Protein Import in Health and Disease

Disease-associated mutations in proteins of the import machinery are rare. The 
short list includes Mohr-Tranebjaerg syndrome and dilated cardiomyopathy with 
ataxia, which are associated with mutations in the homolog genes coding for Tim8a 
and Tim14, respectively (Tranebjaerg et al. 1995; Koehler et al. 1999). This scarce-
ness suggests that most mutations are lethal early during human development. 
However, recent studies start to indicate that protein import can be affected by post-
translational modifications and cellular stress. For example, a mutant variant of the 
mitochondrial superoxide dismutase 1 (SOD1) impairs protein import in spinal cord 
mitochondria. This mutation is involved in the etiology of amyotrophic lateral scle-
rosis (ALS) (Li et al. 2010). Similar examples in which protein import seems to be 
involved in the pathophysiology of age-related diseases includes Alzheimer’s, 
Huntington’s, and Parkinson’s disease (Gottschalk et al. 2014; Di Maio et al. 2016).

The regulation of protein import in healthy cells has been more extensively stud-
ied in skeletal muscles, where studies have shown that import of matrix-destined 
proteins, such as mitochondrial transcription factor A (TFAM) and outer membrane 
proteins such as Tom40 was accelerated as an adaptation to chronic contractile 
activity (Takahashi et al. 1998; Gordon et al. 2001; Joseph et al. 2010). In contrast, 
contractile inactivity impaired import of mitochondrial matrix-destined proteins 
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(Singh and Hood 2011; Tryon et al. 2015), coinciding with a loss of mitochondrial 
content. These effects were associated with depleted ATP levels and reduced mito-
chondrial membrane potential, underscoring the adaptive plasticity of protein 
import and assembly in response to changes in skeletal muscle contractile activity. 
This is a concept that may open possibility for therapeutic intervention. In a recent 
study, a novel role for the apoptosis-associated outer membrane proteins Bax and 
Bak in the regulation of mitochondrial protein import was identified (Zhang et al. 
2013). A double KO model of these two proteins had reduced mitochondrial protein 
import and reduced expression of components of the protein import machinery. 
Interestingly, this impairment was reversed following an endurance training proto-
col. Pharmacological induction is thus a promising approach, as studies have shown 
an increase in biogenesis and protein import upon treatment with thyroid hormone 
(Hood et al. 1992; Craig et al. 1998). More recently, a study suggested that the Bax 
activator protein Bim interacts with TOM subunits Tom20, Tom22, Tom40, and 
Tom70, but the physiological relevance of such interaction remains to be studied 
(Frank et al. 2015). Finally, the recent discovery of specific protein import inhibitors 
may help shed light into the mechanisms of distinct import pathways in healthy and 
diseased cells (Hasson et al. 2010; Dabir et al. 2013).

Studies on the mechanisms of protein import regulation are emerging as a hot 
topic in the field. The glucose-sensitive casein kinases 1 and 2 (CK1 and CK2) and 
protein kinase A (PKA) were shown to phosphorylate the TOM subunits Tom20, 
Tom22, and Tom40 (Schmidt et  al. 2011; Rao et  al. 2012; Gerbeth et  al. 2013). 
While the CKs promoted assembly of the TOM subunits, PKA inhibited import of 
Tom40 (Rao et al. 2012). Another recent study has suggested that assembly of the 
TOM complex can be enhanced by the cyclin-dependent kinase via phosphorylation 
of the Tom6, which also promoted mitochondrial respiration (Harbauer et al. 2014a). 
However, the mechanisms described above pertain to regulation of assembly, but 
not of functioning of the TOM complex. Mechanistic data aside from the classic 
regulation by mitochondrial targeting sequences (MTS) is scarce. A few studies 
suggest that phosphorylation of certain proteins with dual cellular localization can 
either enhance or inhibit binding to the TOM chaperone Hsp70 (Robin et al. 2002; 
Avadhani et  al. 2011). Another example of regulation of dual targeting involves 
proteolytic modification of the cytochrome p450 (Boopathi et al. 2008).

12.4  Import of Mitochondrial DNA Transcription 
Regulators, Nucleic Acids, and Steroidogenic Proteins

The process of mitochondrial biogenesis is essential to cell viability, as mitochon-
dria cannot be produced de novo. As descendants of ancient proteobacteria, mam-
malian mitochondria house their own genome (mtDNA), which is circular, double 
stranded, consisting of 16,569 base pairs. The mtDNA is organized into DNA- 
protein complexes called mitochondrial nucleoids and 37 genes coding. 22 tRNAs, 
2 mitochondrial rRNAs, and 13 protein subunits for electron transport chain 
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complexes except for Complex II (Akhmedov and Marin-Garcia 2015; DeBalsi 
et al. 2016). Along with mtDNA, protein machinery for mtDNA packaging, repli-
cation, transcription, and repair co- localizes in mitochondrial nucleoids. Among 
the major nucleoid-associated proteins are transcription factor A of mitochondria 
(Tfam), mitochondrial single-stranded DNA-binding protein (mtSSB), mtDNA 
helicase Twinkle, mtDNA polymerase γ (POL γ), and mtRNA polymerase 
(POLRMT) (Garrido et al. 2003; Garstka et al. 2003; Akhmedov and Marin-Garcia 
2015). Import of nuclear-encoded mitochondrial proteins is necessary for main-
taining mitochondrial function as well as allowing for the organelles to grow and 
divide. Figure 12.2 presents a current list of known interactions between protein 
import components and regulators of mitochondrial biogenesis, DNA repair, and 
metabolism.

Like the nuclear genome, mitochondrial DNA undergoes transcription and repli-
cation regulated by nuclear genes. A key regulator of mitochondrial biogenesis is 
peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a transcrip-
tional coactivator of nuclear transcription factors, including nuclear respiratory fac-
tors 1 and 2 (NRF1/NRF2) (Wu et  al. 1999). The NRFs promote expression of 
mitochondrial transcription factor A (Tfam), a crucial activator of mtDNA tran-
scription and replication (Larsson et al. 1998).

Fig. 12.2 Summary of known interactions between mitochondrial protein import components and 
regulators of mitochondrial biogenesis, DNA repair, and metabolism. Each colored rectangle 
includes a paired list of known interactions between import components and imported proteins 
involved in metabolism (red), biogenesis (green), and mtDNA repair (blue)
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A number of other proteins, which localize to both the nucleus and mitochondria, 
can influence mitochondrial gene expression. The transcription factor cAMP 
response element-binding protein (CREB) localizes to both the nucleus and the 
mitochondrial matrix, where it promotes cAMP-dependent expression of respira-
tory complex subunits (De Rasmo et al. 2009). CREB-induced mtDNA  transcription 
requires phosphorylation by cytosolic or mitochondrial cAMP-dependent protein 
kinase (PKA) and translocation to the matrix, mediated by Tom20 (Ryu et al. 2005). 
Estrogen receptor β (ERβ) localizes to the mitochondria and is targeted to import 
receptors depending on its ligand-bound status; when unbound, it targets to Tom70 
at Hsp70, and when bound, it targets to Tom20/Tom22 at one of its three LXXLL 
motifs (Simpkins et al. 2008). It is found in the matrix as well, where it may exert 
its effect through interactions with estrogen response element sequences found in 
mtDNA or through pathways involving transcription factors like CREB. Additionally, 
the orphan receptor estrogen-related receptor α, which has been thought to be 
involved in estrogen signaling, is required for PGC-1α-induced mitochondrial bio-
genesis and is able to induce biogenesis in SAOS2 osteosarcoma cells lacking 
PGC-1α (Schreiber et al. 2004). Replication of mtDNA must also be closely coor-
dinated with fission and fusion events, which determine mitochondrial number and 
morphology.

12.4.1  PGC-1α

Regarded as the master regulator of mitochondrial biogenesis, PGC-1α was initially 
described as an activator of the nuclear receptor PPARγ peroxisome proliferator-
activated receptor gamma (Puigserver et al. 1998). Expression of PGC-1α is greatly 
increased upon exposure to cold, elevating PPARγ activity, indicating a role in adap-
tive thermogenesis. PGC-1α is found in tissues where mitochondria are abundant, 
including skeletal muscle, liver, heart, and brown adipose tissue. Since its discovery, 
PGC-1α has been found to induce expression of proteins affecting mitochondrial 
function, including uncoupling proteins and those involved in oxidative phosphory-
lation. Notably, PGC-1α regulates mitochondrial biogenesis primarily by inducing 
Tfam expression through interactions with the transcription factors NRF1 and 
NRF2. Wu et al. demonstrated the physical interactions between PGC-1 and NRF-1 
and showed that binding site on PGC-1 overlaps with the region required for its 
interaction with PPARγ (Wu et al. 1999). Its role outside of mitochondrial biogen-
esis has been reviewed elsewhere (Knutti and Kralli 2001; Liang and Ward 2006).

Investigations into the subcellular localization of PGC-1α have found that its 
cytoplasmic and nuclear distribution is dynamic, e.g., favoring the nucleus in 
response to conditions like oxidative stress (Anderson et al. 2008). The same study 
showed that the NAD-dependent deacetylase sirtuin 1 (SIRT1), which deacetylases 
and influences PGC-1α transcriptional activity, co-localizes with PGC-1α in the 
nucleus after oxidative stress. This is unsurprising, considering that PGC-1α has 
also been found to powerfully induce expression of the antioxidant system in 
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several mitochondria-rich cell types. During myogenesis, PGC-1α was shown to 
reduce levels of ROS, and when downregulated, transcription of mitophagic genes 
LC3 and PINK1 was increased following ROS-dependent translocation of the tran-
scription factor FOXO1 to the nucleus (Baldelli et al. 2014). A protective effect of 
PGC-1α has also been demonstrated in neurons, in which ROS induces expression 
of PGC-1α and the closely related PGC-1β, causing increased expression levels of 
antioxidant enzymes (St-Pierre et al. 2006). While greater PGC-1α nuclear activity 
may lead to an increase in mitochondria number and subsequent ROS production, 
these results nevertheless suggested a strong antioxidant response.

The function of PGC-1α as a nuclear coactivator has been well studied, but 
recently it has been shown that the protein also localizes to mitochondria. Aquilano 
et al. found that both PGC-1α and SIRT1 localize to mitochondria and that SIRT1 
associates with Tfam, a downstream target of PGC-1α (Aquilano et al. 2010). They 
also showed that PGC-1α and SIRT1 form complexes with Tfam, suggesting a pos-
sible direct role in mitochondrial biogenesis.

Although the presence of PGC-1α in mitochondria has been demonstrated, the 
mechanism by which it is imported is not understood. Conditions like elevated ROS 
induce PGC-1α translocation to the nucleus, and it has been shown that PGC-1α can 
accumulate in the mitochondria in response to oxidative stress as caused by acute 
exercise (Safdar et  al. 2011). Further study of ROS-induced shifts in subcellular 
distribution of PGC-1α may determine if the downstream result of nuclear (antioxi-
dant upregulation) or mitochondrial (Tfam interaction) accumulation is favored.

PGC-1α is one of the numerous mitochondrial proteins that lacks the classical 
mitochondrial targeting amino acid sequence (MTS). As Safdar et  al. speculate, 
PGC-1α may be imported into mitochondria by a mechanism requiring posttransla-
tional modifications, similar to other MTS-lacking proteins, or by association with 
a protein that does carry an MTS. One such mechanism may involve PGC-1α phos-
phorylation by the kinase p38 MAPK (Akimoto et al. 2005). However, it has been 
revealed that in mouse hippocampal tissue and purified mitochondria, import of a 
small PGC-1α isoform (35 kDa) is dependent on the outer membrane protein VDAC 
and mitochondrial membrane potential; it was also shown that PGC-1α physically 
interacts with both VDAC and PINK1, suggesting a direct role in mitophagy (Choi 
et al. 2013). It is thought that the varied isoforms are due to posttranslational modi-
fications. Whether these modifications regulate binding of specific PGC-1α iso-
forms to proteins like Tfam, VDAC, or PINK1 has yet to be determined.

12.4.2  Tfam

Unlike PGC-1α, Tfam contains a typical mitochondrial targeting sequence, and its 
interactions with the protein import machinery have been recently characterized. As 
mentioned above, Tfam forms nucleoid structures by binding mtDNA in the mito-
chondrial matrix, possibly aiding to protect mtDNA from oxidative damage. It was 
reported that in bovine retinal epithelial cells, Tfam binds to both the Tom70 subunit 
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of the TOM complex and the Tim44 subunit of the TIM23 complex (Santos and 
Kowluru 2013). Under diabetic conditions, accumulation of TIM23 and TOM com-
plex subunits (Tim23, Tom40, Tom70) in the mitochondria decreased alongside 
decreases in Tfam binding to each subunit. Expression of the subunits did not 
change except for Tim44, which also experienced lowered mitochondrial accumula-
tion and Tfam binding.

Tfam binds to mtDNA in a non-sequence-specific manner and promotes tran-
scription through interactions with mitochondrial transcription factor B2 (McCulloch 
and Shadel 2003). Consequently, reduced import of Tfam would be expected to 
affect mtDNA copy number in a cell as well as disrupt ATP production due to 
changes in expression of respiratory complex complexes. However, even small 
changes in Tfam concentration enough to alter the Tfam:mtDNA ratio can greatly 
affect DNA compaction and mtDNA replication. The in vivo ratio is estimated to be 
1 Tfam molecule per 15–18 base pairs (bp). In a rolling-circle DNA replication 
assay, increasing the ratio to 1 Tfam per 8 bp inhibited mtDNA replication (Kukat 
et al. 2011; Farge et al. 2014). It was proposed that at high Tfam concentrations and 
thus greater mtDNA coverage, peeling of mtDNA strands is blocked, decreasing 
transcription and replication. A recent study found reduced PGC-1α and Tfam 
expression in Alzheimer’s hippocampal tissue, implicating impaired mitochondrial 
biogenesis in Alzheimer’s disease (Sheng et al. 2012). Impaired mitochondrial bio-
genesis has been identified in a number of diseases, and it may be useful to establish 
if it is caused in part by dysregulation of the Tfam:mtDNA ratio (Uittenbogaard and 
Chiaramello 2014). As reported earlier, PGC-1α only binds to mitochondrial Tfam 
bound to the D-loop region of mtDNA, but the functional nature of this relationship 
is not well understood. Does PGC-1α actually directly activate Tfam to promote 
mtDNA transcription and replication? Other factors to consider include acetylation 
status of Tfam, the role of the protein import machinery in regulating the Tfam:mtDNA 
ratio, and the role of PGC-1α/SIRT1-Tfam complexes in mtDNA maintenance.

12.4.3  Import of Nucleic Acids

Interestingly, plant, mammalian, and yeast mitochondria are capable of importing 
DNA (Koulintchenko et al. 2003, 2006; Weber-Lotfi et al. 2009). The mechanism of 
DNA import has not yet been demonstrated, but accumulating evidence suggests 
VDAC is the key import channel. Uptake of DNA was inhibited in isolated mito-
chondria, both plant and mammalian, when exposed to the VDAC blockers DIDS 
and heparin (Weber-Lotfi et  al. 2009). A recent study by Weber-Lotfi et  al. has 
revealed other proteins that may be involved in DNA import (Weber-Lotfi et  al. 
2015). The precursor of the ATP synthase β subunit associates with the outer mem-
brane, where it may cooperate with VDAC by binding to DNA. A copper-binding 
protein of Complex I in the inner membrane they term CuBPp was shown to be 
required for import of long DNA fragments by acting as a receptor in the intermem-
brane space. Translocation of DNA into the matrix remains poorly understood and 
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may involve different mechanisms in plants and mammals. Inhibitors of the inner 
membrane protein adenine nucleotide translocator (ANT) block DNA import in 
plant, but not in mammalian mitochondria (Koulintchenko et al. 2006). Mitochondria 
also import RNA, chiefly tRNAs, and VDAC has again been identified as a key 
regulator, although TOM and TIM23 have been shown to be involved (Campo et al. 
2016). Nucleic acid import into mitochondria is an emerging subject of research, 
and continued work will be necessary to understand the mechanisms and functions 
of this process.

12.4.4  Protein Import and Lipidogenesis

Mitochondrial biogenesis requires not only the import and synthesis of proteins but 
also of lipids, as the organelle is a membrane-bound structure. Several lipids can be 
made by mitochondria, including phosphatidylethanolamine (PE), phosphatidylg-
lycerol (PG), and cardiolipin (CL), but all other lipids must be imported. Lipid 
production in the cell occurs primarily in the endoplasmic reticulum (ER), whose 
membrane associates with the OMM at sites called the mitochondria-associated 
membrane (MAM) (Vance 1990). These sites are thought to be where one of the 
main mechanisms of lipid transport into mitochondria occurs; other proposed mech-
anisms include vesicular traffic and lipid transfer proteins (Horvath and Daum 
2013).

While both the outer and inner membranes contain phospholipids present in all 
cellular membranes, their composition differs especially in regard to CL, which is 
synthesized in the inner membrane. Most of the mitochondrial (and cellular) CL is 
found in the inner membrane, where it interacts with numerous proteins, including 
each of the respiratory complexes and cytochrome c, suggesting a key role of CL in 
mitochondrial function (Flis and Daum 2013). One of the key proteins required for 
CL biosynthesis is translocator and maintenance protein 41 (Tam41), a matrix- 
facing inner membrane protein first identified in yeast as having a role in protein 
import by maintaining TIM23 integrity (Gallas et  al. 2006; Tamura et  al. 2006). 
Tam41 was later shown in yeast to be involved in the CL synthesis pathway as a 
CDP-diacylglycerol (CDP-DAG) synthase, indicating coordination between protein 
import and lipid biosynthesis (Tamura et al. 2013). A recent study has shown that 
CL also directly interacts with mtDNA and in CL-deficient yeast experiencing ther-
mal stress, mtDNA segregation is diminished (Luévano-Martínez et  al. 2015). 
Interestingly, another recent study revealed a new role for a familiar mitochondrial 
biogenesis protein; in hearts of adult mice lacking both PGC-1α and PGC-1β, CL 
levels are reduced due to decreased expression of Cds1, one of several CDP- DAG 
synthases (Lai et al. 2014). Finally, Tom22 has been recently shown to interact with 
the steroidogenic enzyme 3β-hydroxysteroid dehydrogenase 2, implicating the 
TOM subunit in the process of conversion of pregnenolone to progesterone in 
gonadal and adrenal tissues (Rajapaksha et al. 2016).
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12.5  Mitochondrial DNA and Damage

Various sources of both endogenous and exogenous stresses can damage 
mtDNA.  Reactive oxygen species (ROS) generated by oxidative phosphoryla-
tion is the major source of endogenous mtDNA damage. The lesions generated 
by ROS include base modifications, abasic (AP) sites, DNA strand breaks, and 
DNA crosslinks. Additionally, ROS can damage the sugar-phosphate backbone 
in mtDNA. Errors in mtDNA replication machinery can also cause point muta-
tions and deletions. Due to the close proximity of mitochondrial genome to the 
ROS emission site on the inner mitochondrial membrane and the lack of pro-
tective histones, mtDNA is more susceptible to oxidative damage than nuclear 
DNA (nDNA). For the above reasons, damage to mtDNA by exogenous genotoxic 
agents such as industrial byproducts, UV, environmental toxins, and alkylating 
agents is also more extensive (Akhmedov and Marin-Garcia 2015).

As key players in regulating cellular processes from energy metabolism, genera-
tion of ROS, and regulation of cytosolic Ca2+ to stress response, and determination 
of the fate of cells, dysfunctional mitochondria may lead to a wide spectrum of 
pathogenesis including neuromuscular disorders, neurodegenerative diseases, car-
diovascular diseases, and cancer. Thus, the maintenance of mitochondrial genomic 
integrity is crucial for mitochondrial function and viability of cells. In the following 
sections, we will present various mtDNA repair pathways and the import of crucial 
proteins involving in the mtDNA repair mechanism.

12.6  mtDNA Repair

It is currently accepted that mammalian mtDNA possesses almost all nDNA repair 
mechanisms, including base excision repair (BER) (primary repair pathway), 
single- strand DNA breaks (SSBs) repair, mismatch repair, and, possibly, homolo-
gous recombination (HR) and nonhomologous end joining (NHEJ). All of the pro-
teins involved in mtDNA repair are encoded by nDNA and therefore must be 
translocated into the mitochondrial matrix through TOM and subsequently through 
one of the inner membrane channels TIM22 or TIM23. The most well-studied pro-
teins involved in the repair pathways include apurinic/apyrimidinic endonuclease 1 
(APE1), Tfam, mtSSB, POL γ, p53, and RECQL4.

12.6.1  Base Excision Repair (BER)

As mentioned previously, BER is the primary mtDNA repair pathway, which is used 
for excision and repair of oxidized, deaminated and alkylated bases, as well as SSBs 
repair. BER is also the first and most extensively characterized repair pathway in 
mitochondria (Takao et al. 1998; Larsen et al. 2005; Prakash and Doublie 2015).
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The first step in BER is the removal of the damaged base by cleavage of an 
N-glycosidic bond between the nitrogenous base and its deoxyribose. This cleav-
age is catalyzed by DNA glycosylases, the highly conserved nuclear-encoded 
enzymes that contain the mitochondrial targeting sequence (MTS) that allows 
them to translocate to mitochondria. Depending on whether DNA glycosylase 
possesses the intrinsic lyase activity, it can be mechanistically characterized as 
monofunctional (lacks a lyase activity) or bifunctional (possesses a lyase activ-
ity). Monofunctional DNA glycosylases rely on AP endonuclease (APE1) to 
hydrolyze the phosphate backbone, after the AP site is created. The terminal DNA 
ends then undergo dRP lyase reaction and gap filling by DNA polymerase. This 
process of replacing a single nucleotide is known as short-patch BER (SP-BER) 
(Demple and Sung 2005).

12.6.1.1  APE1

Because APE1 is the only protein that can hydrolyze AP sites generated by DNA 
glycosylases, its function directly influences mitochondrial genome stability. 
APE1 contains MTS at residues 289–318 that allow the protein to be translocated 
to mitochondrial inner membrane in response to oxidative stress. The mechanism 
of APE1 translocation into the matrix is not yet understood. Mutations at Lys299 
and Arg301 abolish the import of APE1 to mitochondria under oxidative stress, 
which suggests that these are the critical sites. It has been shown that APE1 passes 
through TOM, although the mechanism is still not clear. Upon passage through 
TOM, APE1 interacts with the mitochondrial import and assembly protein Mia40, 
the main component of the MIA import pathway, which catalyzes the formation 
of a disulfide bond between APE1’s Cys93 and Mia40’s Cys55 residues. After the 
import, another component of the MIA pathway, augmenter of liver regeneration 
(ALR), reoxidizes Mia40. Although APE1 is normally localized in the inner mem-
brane space, some of it is imported into the matrix via the presently unknown 
mechanism. Expression levels of Mia40 affect translocation of APE1 and, as a 
result, mitochondrial genome stability. Additionally, abnormal expression and 
localization of APE1 was found to be associated with tumor aggressiveness and 
chemoresistance (Barchiesi et al. 2015).

12.6.1.2  UNG1

Human uracil DNA glycosylase 1 (UDG1 or UNG1) is a monofunctional glycosyl-
ase, which is a mitochondrial isoform of the enzyme produced both by alternative 
splicing and transcription from a different start site. The active site, an Asp145 resi-
due, initiates catalytic cleavage of the N-glycosidic bond on single- (ss) or double-
stranded (ds) DNA. To aid the binding of uracil to the active site, another UNG1 
residue, Leu272, is inserted into the minor groove of DNA and causes a local dis-
ruption (Prakash and Doublie 2015). Although it is known that UNG1 preprotein 

12 Protein Import Channels in the Crossroads of Mitochondrial Function



328

contains a MTS, which gets cleaved upon entry to the inner membrane, and that 
residues 1–28 are sufficient to ensure import, no research investigating the mecha-
nism of such import is currently available (Otterlei et al. 1998).

12.6.1.3  MUTYH

A human homolog of the bacterial mutY.  MUTYH recognizes and excises the 
undamaged adenine opposite to 7,8-dihydro-8-oxo-guanine (8-oxo-G) lesion as 
means of preventing C:G to A:T transversion mutations. POL γ then inserts the 
cytosine to correctly pair the bases. These transversion mutations are among the 
most often found in several prevalent cancers (Markkanen et al. 2012; Prakash and 
Doublie 2015). Despite containing an MTS and playing a key role in the repair of 
one of the most abundant and highly mutagenic kinds of oxidative damage, 8-oxo-
G, MUTYH import into mitochondria has not been studied (Markkanen et al. 2012; 
Prakash and Doublie 2015).

12.6.1.4  OGG1

Another kind of enzyme responsible for 8-oxo-G lesion repair is 8-oxo-G DNA 
glycosylase 1 (OGG1), a bifunctional glycosylase and a human homolog of the 
bacterial mutM. Several isoforms of OGG1 produced by alternative splicing have 
been described, all of them containing the same N-terminal MTS but varying 
C-terminus. Literature suggests that import of OGG1 into mitochondrial matrix 
improves with aerobic exercise and declines in an age-dependent manner 
(Szczesny et al. 2003; Radak et al. 2009).

In addition to OGG1, three other bifunctional DNA glycosylases have been doc-
umented in mammalian mitochondria, NTHL1, NEIL1, and NEIL2. The first one, 
NTHL1, is responsible for the excision of oxidized pyrimidine lesions. NEIL1 
exhibits the preference for guanidinohydantoin (Gh), spiroiminodihydantoin (Sp), 
thymine glycol (Tg), 5-hydroxyuracil (5-OHU), dihydrouracil (DHU), and ring- 
opened 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy) damaged bases in 
dsDNA, and NEIL2 excises 5-OHU lesions in ssDNA (Brooks et  al. 2013; 
Akhmedov and Marin-Garcia 2015). To our knowledge, the mechanism of import 
of these three enzymes has not yet been proposed.

12.6.1.5  p53

The p53 protein is mostly known as a tumor suppressor and a transcription factor, 
but p53 also regulates various cellular processes such as DNA repair, cell cycle, 
apoptosis, redox homeostasis, and metabolism. Not surprisingly, p53 is commonly 
referred to as the “guardian of the genome” (Park et al. 2016a). p53 participates in 
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almost all nDNA repair pathways with the exception of nucleotide excision repair 
(NER). The roles of p53 in mtDNA repair include 3–5′ exonuclease activity, 
involvement in mtDNA replication, and ensuring the accuracy of mtDNA synthesis 
by excising mispaired nucleotide bases (Bakhanashvili et al. 2008).

At least three distinct mechanisms of p53 translocation into mitochondria have 
been discovered in unstressed normal cells. The first import pathway involves the 
physical interaction of p53 with RecQ helicase-like protein 4 (RECQL4), a nuclear 
DNA helicase containing 1,208 amino acid residues. The amino-terminal region of 
RECQL4 contains both MTS and NLS (nuclear localizing signals) (NLS) and MTS. 
The MTS of RECQL4 allows it to interact with Tom20 and to likely cross the outer 
membrane via the TOM complex. The NLS region is positioned at amino acids 
270–400 of RECQL4 and 293–362 of p53. The interaction of RECQL4 and p53 at 
the aforementioned positions masks their respective NLSs, allowing the transloca-
tion of the complex into the mitochondrial matrix (Croteau et al. 2012; De et al. 
2012; Park et  al. 2016a). However, the precise translocation pathway across the 
inner membrane has yet to be identified.

The biological functions of interaction between RECQL4 and p53 in mitochon-
dria are not known. In unstressed normal cells, RECQL4 co-localizes with p53 in 
mitochondria in addition to the nucleoplasm and participates in mtDNA mainte-
nance. Its specific involvement in mtDNA replication and repair is not clearly 
understood (Croteau et  al. 2012). RECQL4-deficient cells exhibit mitochondrial 
bioenergetic defects and dysfunction involving reduced mtDNA copy number, 
increased ROS production, elevated mitochondrial fragmentation, and diminished 
mtDNA repair capacity after oxidative stress, highlighting its role in mitochondrial 
function and genomic stability (Chi et al. 2012).

The second pathway of p53 import involves the activation of cryptic MTS by a 
cytosolic protease, which recognizes serine protease consensus sites present in 
mammalian p53 (Park et al. 2016a). The proteolytic cleavage of p53 results in a 
~40  kDa fragment, which is imported through the membranes of mitochondria 
(Boopathi et al. 2008). However, additional research is necessary to represent the 
nature of the signals and/or mechanism of this pathway.

The third p53 import pathway contains a disulfide relay system consisting of the 
import receptor CHCHD4 and the FAD-dependent sulfhydryl oxidase (GFER) in 
the intermembrane space (IMS). CHCHD4, coiled-coil-helix-coiled-coil-helix 
domain containing four proteins, is the mammalian homolog of Mia40 and can 
form intermolecular disulfide bonds with cysteine residue in proteins targeted for 
translocation into the mitochondria (Zhuang et  al. 2013). The protein p53 pos-
sesses cysteine- rich motifs (Cys-135/Cys-141 and Cys-275/Cys-277), which can 
form two intramolecular disulfide bonds. Thus, in a respiration-dependent manner, 
CHCHD4 can covalently bind p53 at the Cys-135 residue (disulfide Cys-135/Cys-
141 pair) upon its translocation across the TOM complex (Park et al. 2016a). This 
mitochondrial disulfide relay system needs the regeneration of oxidized CHCHD4 
through its oxidase GFER, which successively transfers the electrons to oxidized 
cytochrome c. As a result, p53 import via this process requires the reoxidation of 
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reduced cytochrome c by respiratory Complex IV (Zhuang et  al. 2013). Other 
substrates of Mia40 such as TIM22 and mitochondrial ribosome Mrp10 are 
required to translocate to the inner membrane and matrix, respectively. Nevertheless, 
it is not clear how p53 via its interaction with CHCHD4 is imported into the matrix 
space, where mtDNA resides (Park et al. 2016a). Clearly, CHCHD4-mediated p53 
import plays a role in mtDNA repair. The CHCHD4-overexpressed cells elevate 
the recovery of mtDNA integrity compared with the control. In contrast, CHCHD4-
depleted cells have decreased mtDNA integrity (Zhuang et al. 2013).

Although the exact function of p53 in mitochondria requires more research, p53 
is indeed essential for mtDNA repair and accuracy of DNA synthesis. Studies show 
that p53 physically interacts with mtDNA and POL γ, acting as an external proof-
reader for DNA replication. In Addition, p53 elevates the binding of Tfam to cyto-
toxic-damaged DNA, and enhances BER through direct interaction with the repair 
complex in the inner membrane (Bakhanashvili et al. 2008).

12.6.1.6  Tfam in mtDNA Repair

Besides taking roles in mtDNA transcription, replication, regulation of mtDNA 
copy number, and organization of the mitochondrial nucleoid, as previously men-
tioned in section 12.4.2, Tfam participates in mtDNA repair and modulates BER 
enzymatic activities. Recent study by Canugovi et al. found that Tfam reduced the 
activities of the steps of BER involving OGG1, UDG, APE1, and POL γ in vitro by 
binding to mtDNA. The purpose of Tfam by doing so is not likely to inhibit DNA 
repair or mtDNA metabolic processes rather to modulate the access of those pro-
teins to mtDNA. The interacting proteins including p53 can regulate Tfam/mtDNA 
affinity and promote BER in mtDNA, suggesting a role of Tfam as an important 
regulator of BER.  Furthermore, Tfam knockdown cells express higher mutation 
frequency and mtDNA damage (Canugovi et  al. 2010). The import pathway of 
Tfam into mitochondria is described in Mitochondrial Biogenesis section.

12.6.2  Single-Strand DNA Breaks (SSBR)

SSBR is often regarded as a sub-pathway of BER due to its different end process-
ing events to restore phosphate (5′-P) and hydroxyl (3′-OH) before ligation pro-
ceeds. There are other instances in which end processing at a SSB may take place 
without being preceded by the other BER steps involving removal of a damaged 
base and cleavage at an abasic (AP) site. In those instances, two enzymes, tyrosyl-
DNA-phosphodiesterase 1 (TDP1) and aprataxin (APTX), are directly involved 
(Meagher and Lightowlers 2014).
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12.6.2.1  TDP1 and APTX

TDP1 and APTX are recently discovered enzymes of the mtDNA repair network 
of SSBR. TDP1 can repair 3′ lesions induced by chain terminating nucleoside ana-
logues. APTX is required to remove the covalent attachment of adenine monophos-
phate (AMP) to the 5′ end of mtDNA (5′-AMP), caused by abortive ligase activity 
next to an existing lesion. To this date, it is not known exactly how TDP1 is imported 
to mitochondria lacking N-terminal MTS (Das et  al. 2010). In contrast, APTX 
possesses an alternatively spliced isoform containing 14 aa N-terminal sequence, 
which is possibly an MTS. The MTS is cleaved upon entry into the mitochondria 
by a mitochondrial processing peptidase (MPP) (Meagher and Lightowlers 2014). 
Further research is required to describe how TDP1 and APTX are translocated to 
the mtDNA damage sites. Mutations in the genes encoding TDP1 and APTX result 
in failure to repair 3’ lesions and to remove covalent attachment, respectively. Such 
failure reduces mtDNA stability, since SSBs can further result in double-strand 
breaks. Oxidative mtDNA damage accumulates in cells lacking TDP1, suggesting 
a role in ROS-induced mtDNA damage repair. Furthermore, mutations in TDP1 
and APTX can cause ataxia, which is often associated with mitochondrial disease 
(Das et al. 2010; Meagher and Lightowlers 2014).

12.6.3  Mismatch Repair (MMR)

As the name suggests, MMR repairs base-base mismatches and small nucleotide 
insertion/deletion mispairs. The presence of the nuclear MMR proteins in the mito-
chondria has been controversial (Martin 2011). de Souza-Pinto et al., in 2009, did 
not observe the localization of the nuclear MMR proteins, MutS homolog 3 and 6 
(MSH3 and MSH6, respectively), and MutL homolog 1 (MLH1) in human mito-
chondria (de Souza-Pinto et  al. 2009). However, Martin et  al. and others have 
detected the presence of MLH1 in the mitochondria and found a role for MLH1 in 
oxidative mtDNA repair. Deficiency of MLH1 in addition to silent mitochondrial 
genes, POLG and PINK1, shows an increase 8-oxo-G lesions (Martin 2011). A 
human homolog, hMSH5, directly interacts with mtDNA, Twinkle, and POL γ. 
Oxidation-induced lesions are more efficiently repaired (Bannwarth et al. 2012) in 
cells that overexpress hMSH5. Furthermore, de Souza-Pinto et  al. identified the 
Y-box-binding protein (YB-1) as an a mtDNA mismatch-binding and mismatch 
repair factor in human mitochondria. It is shown that YB-1 directly binds to mtDNA 
and participates in the repair (de Souza-Pinto et  al. 2009). To date the extent of 
mismatch repair activity and the import pathways of MMR proteins into mitochon-
dria are not clearly known and required further research (Martin 2011; Bannwarth 
et al. 2012).
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12.6.3.1  DNA Ligase III (LIG3)

LIG3 is the only DNA ligase known in mitochondria. The absence of LIG3 in vitro 
is accompanied by the loss of mtDNA without losing cell viability (Spadafora et al. 
2016). In 1999, Lakshimpathy et al. demonstrated that the upstream 5′ end of LIG3 
cDNA coded for an MTS (Lakshmipathy and Campbell 1999). When entering mito-
chondria, the resultant MTS is cleaved producing a mature protein with similar 
molecular weight as the nuclear variant (Meagher and Lightowlers 2014). 
Mitochondrial LIG3 is mainly involved in BER and in replication of mtDNA. In 
addition, LIG3 plays a role in an alternative pathway of DNA double-strand break 
repair that supports NHEJ (Kukshal et al. 2015). The exact translocation pathway of 
LIG3 to the mitochondrial matrix has yet to be identified.

12.6.3.2  mtSSB

mtSSB is the only known mitochondrial single-stranded DNA-binding protein. It is 
essential in mtDNA replication and could have a functional role similar to that of 
the nuclear ssDNA-binding replication protein A (RPA) in managing mitochondrial 
replication-associated DNA repair. Little is known about a role of mtSSB in the 
context of mtDNA repair (Wollen Steen et al. 2012). The import pathway of mtSSB 
in mammalian mitochondria is not well studied. However, in the plant, Arabidopsis 
thaliana, a gene encoding a mitochondrially targeted SSB (MTSSB) was identified. 
The At4g11060 gene codes for a protein of 201 aa, including a 84-bp region coding 
28-residue presumed N-terminal mitochondrial targeting transit peptide (Edmondson 
et al. 2005). There is a high similarity between the human, bacetrial, and plant orto-
logs of mtSSB, suggesting a highly conserved function in plasmidial DNA repair 
(Edmondson et al. 2005) (Akhmedov and Marin-Garcia 2015).

12.6.3.3  POL γ

As the only known polymerase found in mammalian mitochondria, POL γ pro-
motes mtDNA replication, recombination, and repair (Graziewicz et al. 2006). The 
extent of import of this enzyme into the mitochondria has not been studied. POL γ 
are accountable for high accuracy of mtDNA replication through 3–5′ exonucleo-
lytic proofreading activity and nucleotide selectivity (Akhmedov and Marin-Garcia 
2015). Mutations in POL γ can cause point mutations and deletions in mtDNA and 
can be the source of mitochondrial diseases such as progressive external ophthal-
moplegia (PEO), Parkinson’s disease, and Alpers syndrome (Akhmedov and 
Marin-Garcia 2015; DeBalsi et al. 2016). POL γ fills single-nucleotide gaps in the 
presence of a 5′ terminal deoxyribose phosphate (dRP) flap (Graziewicz et  al. 
2006). The process is aided by flap endonuclease (FEN1) and DNA nuclease/heli-
case (DNA2). Interestingly, DNA2 does not contain a canonical MTS, but its trans-
location to mitochondria requires a specific sequence between 734 and 829 amino 
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acid residues. By interacting with POL γ, DNA2 activates the polymerase (Zheng 
et al. 2008; Akhmedov and Marin-Garcia 2015; Ding and Liu 2015). In addition, 
the mitochondrial 5′ exo/endonuclease G (EXOG) is capable of excising displaced 
5′ flaps, while depletion of EXOG affects mitochondrial genome and leads to mito-
chondrial dysfunction in different kinds of human cells (Zhuang et  al. 2013; 
Akhmedov and Marin-Garcia 2015). Finally, a newly discovered 5–3′ exonuclease 
MGME1 has been shown to create ligatable DNA ends in combination with POL γ. 
Loss of MGME1 function results in multisystemic mitochondrial disease in humans 
(Akhmedov and Marin-Garcia 2015; Uhler et al. 2016).

12.7  Protein Import and Metabolism

Mitochondria are the major metabolic hub in eukaryotic organisms, which has 
granted these organelles the nickname “powerhouse of the cell.” The major meta-
bolic function of mitochondria is carbohydrate metabolism, involving production of 
ATP by way of the tricarboxylic acid cycle and oxidative phosphorylation. 
Additionally, two other major metabolic processes occurring within mitochondria 
include energy production through fatty acid oxidation as well as citrulline produc-
tion in the urea cycle (Nakagawa and Guarente 2009; Cheng and Ristow 2013).

12.7.1  Import of Metabolic Exchangers

Mitochondrial metabolism relies on import of its protein machinery. Import path-
ways vary depending on the nature and final destination of such proteins. One com-
ponent of the metabolic machinery is the voltage-dependent anion channel (VDAC), 
which allows transport of ions, metabolites, and nucleic acids across the outer mem-
brane. In its highest conductance state, VDAC is involved in the exchange of anionic 
metabolites pyruvate, ATP, ADP, Pi, and nucleotides and is additionally capable of 
transporting non-electrolyte substances of up to 5 kDa in size (Pavlov et al. 2005; 
Lemasters and Holmuhamedov 2006; Mannella and Kinnally 2008; Rostovtseva 
2012). Anion gating occurs with a 50–60% reduction in conductance; consequently, 
due to the electrostatic nature of the VDAC channel walls, flow of small cations 
such as Ca2+ is facilitated (Colombini 2004). The import and assembly of VDAC is 
driven by an MTS that directs it to Tom20 and Tom22 receptors within the TOM 
complex. Once imported through TOM, the SAM complex integrates VDAC to the 
OMM (Kozjak-Pavlovic et al. 2007).

VDAC interacts with several metabolite transporters located in the inner mem-
brane. The inorganic phosphate carrier or PiC is imported in an ATP/ΔΨ-dependent 
manner to the IM and is responsible for the direction of Pi to the matrix (Pratt et al. 
1991). The pyrimidine nucleotide carrier −1 (PNC-1), also referred to as 
SLC25A33, is induced by insulin like growth factor (IGF-I) and is responsible for 
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the import of nucleotides for biogenesis of mtDNA (Favre et  al. 2010; Di Noia 
et  al. 2014). PNC aids in maintaining an appropriate ratio of mtDNA to nDNA 
genes and is responsible for cell maintenance but can support tumor growth (Favre 
et al. 2010). VDAC’s interaction with the adenine nucleotide translocase (ANT) 
allows for exchange of ATP and ADP between the matrix and the cytosol via VDAC 
(Gavalda-Navarro et al. 2014). The proteins that form this metabolite pathway are 
imported through TOM and delivered to TIM22 by Tim9/Tim10 chaperone pro-
teins (Endres et al. 1999) In addition to ATP/ADP exchange, ANT is also involved 
in the uncoupling of fatty acids prior to β-oxidation. Deficiency or malfunction of 
ANT leads to oxidative damage and has been linked to cardiac arrhythmias, low-
ered production of erythrocytes and B-lymphocytes, as well as a possible link to 
type 2 diabetes (Ciapaite et al. 2006; Cho et al. 2015; Roussel et al. 2015).

As mentioned above, mitochondrial metabolism and the import of its protein 
machinery are inherently codependent. The 13 proteins coded by mtDNA are incor-
porated into the inner membrane as subunits in Complexes I, III, IV, and V of the 
electron transport chain (ETC), while all other protein components involved in oxi-
dative phosphorylation are nuclear encoded and must be imported to the matrix or 
inner membrane (Bentinger et al. 2010; Alcazar-Fabra et al. 2016). During import 
of matrix-targeted proteins, positively charged presequences are electrophoretically 
driven to the matrix because of the ΔΨ created by the ETC (Harbauer et al. 2014b). 
This codependency is further exemplified by the ATP requirement of chaperone 
interactions with the proteins en route to the mitochondrial matrix (Wachter et al. 
1994) and by the effect of ΔΨ depletion on steady-state levels of Tom20 and Tim23 
(Joseph et al. 2004).

Mitochondrial import pathways employ highly conserved protein complexes, 
which are present in Saccharomyces cerevisiae, resulting in myriad studies per-
formed on this readily accessible organism (Campo et al. 2016). In the respiratory 
Complex III, or the cytochrome bc1 complex, all subunits are nuclear encoded with 
the exception of the mtDNA-encoded respiratory subunit cytochrome b. The Rieske 
iron-sulfur protein (ISP), one of three respiratory subunits of Complex III involved 
in redox, has been shown in multiple studies, to contain a 30 amino acid-long MTS 
at the N-terminal portion of the precursor protein, which is subsequently cleaved 
prior to incorporation into Complex III (Brandt et al. 1993; Conte and Zara 2011). 
Interestingly, in this case, the cleaved MTS of ISP is retained to form subunit 9 of 
Complex III (Brandt et al. 1993). The second nuclear-encoded respiratory subunit 
(4) of Complex III, cytochrome c1, has been experimentally shown to follow well- 
understood import pathways to the IM. In addition to being ΔΨ dependent for suc-
cessful import, cytochrome c1 possesses a bipartite presequence containing two 
hydrophobic domains (Rodiger et al. 2011). Evidence indicates that hydrophobic 
areas of the MTS do not signal a stop transfer to incite lateral release. Initially, cyto-
chrome c1 imports to the matrix and subsequently exports to the inner membrane for 
integration to Complex III, which involves dual cleavage of its MTS (Stuart et al. 
1990). This suggests the probable TIM23  – OXA pathway of inner membrane 
import (Campo et al. 2016).
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Import of respiratory subunits, such as the above examples of Complex III sub-
units, demonstrates the direct and most obvious effect protein import has on meta-
bolic function; that is, protein import supplies the metabolic machinery necessary 
for oxidative phosphorylation to occur. Examining the function of these protein 
subunits, in turn, demonstrates the converse effect metabolic function has on import. 
Such is the case with ISP, as it has been shown to not only facilitate electron flow 
through Complex III but also to function as a gating protein responsible for the 
release of 4 H+ with every two rotations of the Q cycle (Gurung et al. 2005; Jafari 
et al. 2016). The proton-pumping abilities of Complex III contribute to the ΔΨ vital 
for the import of metabolically supportive proteins.

12.7.2  Import of Metabolic Regulators

12.7.2.1  Coenzyme Q

Coenzyme Q (CoQ), also known as ubiquinone or Complex II, is an isoprenylated 
compound with two major biological functions within the ETC: (1) as a single elec-
tron acceptor, it forms semiquinone, a semi-reduced conformation with antioxidant 
properties allowing it to absorb free radicals and reduce emission of ROS, and (2) 
as an acceptor of two electrons, CoQ drives the ETC by then reducing Complex III 
(Gonzalez-Mariscal et al. 2014). Additionally, CoQ is an electron carrier involved 
in pyrimidine synthesis and β-oxidation (Allan et al. 2015). CoQ is a unique com-
plex (of the ETC) in that it does not involve proteins encoded by either nDNA or 
mtDNA. Instead, CoQ is assembled within the matrix in the mevalonate pathway by 
a complex of proteins referred to as the coenzyme Q synthome or CoQ- synthome 
(Alcazar-Fabra et al. 2016). This conglomeration of proteins includes 11 subunits 
named Coq 1–11 as well as ferredoxin (Yah1) and ferredoxin reductase (Arh1) all 
of which are nuclear encoded (Gonzalez-Mariscal et  al. 2014; Allan et  al. 2015; 
Jenkins et al. 2016). The CoQ-synthome is an example of an indirect but vital rela-
tionship between metabolism and the import of Coq-synthome protein subunits. 
Twelve of the subunits are imported and assembled in the matrix, with only the sub-
unit Coq2p being inserted into the IM. Coq2p is thought to anchor the synthome to 
the IM (Gonzalez-Mariscal et al. 2014). The pathway of import has logically been 
assumed to utilize the matrix-targeted TOM-TIM23 pathway (Gonzalez-Mariscal 
et al. 2014). The exact mechanism of import for these proteins, however, has yet 
to be specifically investigated. While this import pathway is understood to be the 
method of import for all matrix-targeted proteins, the mechanism of import of CoQ-
synthome merits investigation. Saccharomyces cerevisiae contains CoQ(6), a CoQ 
compound analogous to the Homo sapiens form CoQ(10) that differs in its num-
ber of isoprenyl subunits. It has been experimentally shown that strains grown in 
the absence of ΔΨ were able to continue to synthesize CoQ(6) at normal levels 
(Santos-Ocana et al. 1998; Gonzalez-Mariscal et al. 2014). This observation elic-
its many questions: Are Coq-synthome proteins continuing to be imported in the 
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absence of ΔΨ? Does this suggest a yet undiscovered mechanism of protein import 
to the matrix? Is the same result able to be replicated with CoQ(10)? Not only is the 
method of import in question, but new subunits of the CoQ-synthome are continu-
ing to be discovered, making this complex an important topic of continued research.

12.7.2.2  Stat3/GRIM-19

The gene associated with retinoid-interferon-induced cell mortality 19 (GRIM-19) 
and signal transduction and activator of transcription 3 (STAT3) have an important 
relationship that influences metabolic function in mitochondria and introduces a 
novel mechanism of import. GRIM-19 is a nuclear-encoded protein imported to the 
IM to be integrated as a component of Complex I (Tammineni et al. 2013) Stat3 is 
a nuclear-encoded transcription factor protein with both nuclear and mitochondrial 
functions. The nuclear function involves the LIF/JAK/Stat pathway, while in mito-
chondria Stat3 not only is integrated with Complex I but also serves as a transcrip-
tion factor (Wegrzyn et al. 2009).

The mechanism of import for GRIM-19 is ΔΨ dependent. Import of Stat3, on the 
other hand, involves a less conventionally studied mechanism. Phosphorylation of 
two sites on Stat3, Tyr-705 and Ser-727, determines a nuclear localization. When 
only Ser-727 is phosphorylated, Stat3 becomes associated with GRIM-19  in the 
cytosol and co-localizes to the inner membrane of mitochondria. It is thought that 
phosphorylation of Ser-727 allows for a binding site between the two proteins. 
GRIM-19 not only behaves as a chaperone for Stat3 but aids in the assembly of 
Complex I (Tammineni et al. 2013). The co-localization of these two inner mem-
brane proteins may indicate a novel mechanism for import. Prior studies have shown 
inner membrane-bound proteins to be chaperoned to Tom70 by Hsp70 and Hsp90. 
Once in the inner membrane, they would be chaperoned to TIM22 by Tim9-Tim10 
and Tim8-Tim13 complexes. However, the precise import pathways of Stat3 and 
GRIM-19 have yet to be studied (Young et al. 2003; Hasson et al. 2010).

The role of mitochondrial Stat3  in metabolism and its physiological conse-
quences are a topic of current research. GRIM-19 knockouts in mice models were 
shown to be lethal at the embryonic stage, while Stat3 knockouts showed decreased 
levels of function in Complexes I and II (Wegrzyn et al. 2009). As mentioned above, 
while Stat3 physically associates with Complex I, it also binds mtDNA and pro-
motes the transcription of ETC proteins (Park et al. 2016b). The co-localization of 
GRIM-19 and Stat3 in concert with the circumstances under which each is active 
may suggest these proteins actually have antagonistic roles. GRIM-19, though nec-
essary for the function of Complex I, is an inducer of apoptosis and an inhibitor of 
Stat3. Conversely, the Stat3 ability to upregulate mtDNA translation may cause 
anti-apoptotic effects leading to tumorigenesis if left unchecked (Zhang et al. 2003). 
In addition to the potentially pathological effect mitochondrial Stat3 could produce, 
recent studies have found potentially vital benefits of the transcription factor. The 
proliferation increased expression of ETC machinery proteins induced by Stat3 has 
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been seen to support the energy-expensive process of maintaining embryonic stem 
cells (ESC) in a naïve pluripotent state. In fact, with enhanced oxidative phosphory-
lation, primed stem cells can return to a naïve pluripotency stage (Carbognin et al. 
2016). Stat3 has also been found to be upregulated in neuronal cells surrounding an 
injury site to the spinal cord, which might suggest a role of Stat3 in cell survival 
(Park et al. 2016b).

12.7.2.3  F1Fo-ATP Synthase Subunit ε

The F0F1-ATP synthase is a two-sectioned multi-subunit complex responsible for 
physically combining ADP and Pi to produce ATP. The F1 region of ATP synthase, 
located in the matrix, contains five protein subunits α, β, γ, δ, and ε (Jonckheere 
et al. 2012). Subunit ε of region F1 is a small 5.8 kDa protein which is nuclear 
encoded by the ATP5E gene. It is important to make the distinction that the F1 sub-
unit ε of bacteria and chloroplast cells is homologous to the subunit δ of mamma-
lian ATP synthase; in addition, bacteria and chloroplasts do not possess a protein 
homologous to the mammalian subunit ε (Havlickova et al. 2010). Saccharomyces 
cerevisiae do however possess an F1 Su ε homologous in structure and function 
to the mammalian ortholog and is therefore a convenient model for investigation 
(Lai- Zhang and Mueller 2000).

Unlike other matrix-targeted proteins, Su ε does not possess a cleavable MTS 
(Havlickova et al. 2010). This structural feature presents a conundrum when consid-
ering the mechanism of import. Recently, it was experimentally shown that the sub-
unit ε is imported through TIM2, but independently of ΔΨ and without positively 
charged residues at the N-terminus (Turakhiya et  al. 2016). When the positively 
charged amino acid sequences were added on the N-terminal end, import became 
dependent of ΔΨ (Turakhiya et al. 2016). These results indicate the possibility of a 
yet undefined mechanism of protein import into mitochondria.

12.7.2.4  NF-kB

The NF-kB family of transcription factors controls the expression of genes involved 
in inflammation, metabolism, cancer, and development. Aside from its canonical 
regulation of mitochondrial metabolism by regulating gene expression, NF-kB was 
shown to localize to the intermembrane space and to interact with the ATP-ADP 
translocator-1 (Bottero et  al. 2001). This interaction promotes the mitochondrial 
recruitment of NF-kB with a concomitant decrease in its nuclear activity. This result 
is further corroborated with decreased expression of known nuclear anti-apoptotic 
NF-kB target genes, Bcl-xL and c-IAP-2 (Zamora et al. 2004). Another NF-kB fam-
ily member, RelA, is also present in the mitochondria, where it binds to mitochon-
drial DNA and inhibits the expression of cytochrome c oxidase III (Cogswell et al. 
2003). Interestingly, mitochondrial p53 levels negatively correlate with RelA levels. 
This potential interplay between mitochondrial p53 and RelA levels is further 
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supported by the fact that overexpression of p53 mitigates the inhibitory effect of 
RelA on mitochondrial gene expression (Johnson et al. 2011). It has been proposed 
that these antagonistic functions of p53 and RelA on mitochondrial respiration 
influence the metabolic switch from oxidative to anaerobic metabolism (Johnson 
et al. 2011). Importantly, we found no studies into the mechanisms of mitochondrial 
translocation of this widely studied family of transcription factors.

12.7.2.5  Foxg1

Forkhead box g1 or Foxg1 is a transcription factor that functions in both the nucleus 
and mitochondria. Its function, which is necessary for the formation of the mature 
mammalian cerebral cortex structure, may play a key role in the signaling pathways 
between nucleus and mitochondria. Foxg1 aids in proliferation and differentiation 
of cell tissues that lead to growth and maturation of the telencephalon and mesen-
cephalon (Ahlgren et al. 2003). Nucleus-targeted Foxg1 acts as a repressor for tran-
scription, specifically of fibroblast growth factors. Overexpression of mtFoxg1 
results in larger mitochondria (often longer than 4 μm) as well as an increase in cell 
differentiation. Not only does mt-Foxg1 promote differentiation, but also it supports 
mitochondrial fusion. Conversely, full-length Foxg1 is involved with mitochondrial 
fission. The dual roles within matrix-targeted Foxg1 suggest it is a regulatory factor, 
which aids in producing the correct ratio of cells for cerebral cortex formation. 
Import of mt-Foxg1 involves a MTS at aa 277–302, a location farther from the 
N-terminus than classically observed. The ΔΨ-dependent mechanism of import for 
mt-Foxg1 is not specifically defined, but it has been suggested that the full-length 
protein is imported and subsequently broken into smaller fragments as varied func-
tions are favored (Pancrazi et  al. 2015). Foxg1 mutations can lead to congenital 
encephalopathies including Rett syndrome (Kumakura et al. 2014), as well as facial 
dysmorphisms, and epilepsy (Cellini et al. 2016).

12.8  Concluding Remarks

With the elucidation of the mitochondrial proteome in several organisms including 
humans, the development of tracing techniques, and the emerging studies on regula-
tory mechanisms, the field of mitochondrial protein import is gaining renovated 
interest. Nuclear transcription and metabolic factors are now known to regulate 
mitochondrial function and dysfunction in cancer, neurodegeneration, and cardiac 
injury. Understanding the mechanism of mitochondrial recruitment will support 
development of therapeutic interventions. It has also become evident that the pro-
tein import machinery may function as a rheostat that adapts to match changes in 
cellular metabolic needs. Targeting this machinery with exercise or pharmacologi-
cal compounds is thus becoming an attractive approach to modulate mitochondrial 
mass in healthy and diseased cells. In addition to identifying distinct regulatory 
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mechanisms, future studies should aim at defining the interactions between different 
machineries, signaling networks, bioenergetic complexes, mitochondrial dynamics, 
and apoptosis.
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Chapter 13
Substrate Selection and Its Impact 
on Mitochondrial Respiration and Redox

Sonia Cortassa, Steven J. Sollott, and Miguel A. Aon

13.1  Introduction

We increasingly recognize that complex gene-environment and gene-nutrient 
interactions underlie an organism’s response to physiological or pathophysi-
ological stimuli. An individual genomic variant (Mendelian-type inborn error) 
can affect subtly one primary metabolite flux, without evidence of clinical dis-
ease; however, in a complex disease, state variations perturbing a network of 
metabolite fluxes may attain the clinical threshold for disease, either alone or in 
combination with environmental factors (Lanpher et al. 2006). The capacity to 
comprehensively assess gene, protein, transcript, and metabolite profiles, includ-
ing posttranslational modifications, through high-throughput “omics” studies, 
has opened new avenues of research possibilities, among them the character-
ization of metabolic remodeling associated with disease, e.g., diabetes, cancer, 
aging, or normal physiology such as observed in the fast-feed transition or caloric 
restriction (Kelley and Mandarino 2000; Mitchell et al. 2016).

Multiple environmental (e.g., nutrition) and genetic interactions produce different 
phenotypic patterns of which metabolites and metabolic fluxes are main functional 
readouts. Recently, the concept of metabolism-epigenome-genome axis was proposed 
to account for the dynamic and reciprocal feedback loops between the epigenome 
and the genome, in turn, driven by metabolic-elicited modifications, e.g., histones 
acetylation and deacetylation, DNA methylation, and the feedback from the genome 
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to the epigenome, exemplified by the expression level of histone acetyltransferases, 
histone deacetylases, histone methyltransferases, and demethylating enzymes 
(Aon et al. 2016). Hypothetically, a metabolism-epigenome-genome axis provides a 
comprehensive framework for analyzing the modulation of genotype- phenotype 
interactions in response to different nutritional environments. According to this con-
cept, the epigenome represents an interface between metabolism and the gene expres-
sion machinery of nuclear and mitochondrial DNAs (Donohoe and Bultman 2012; 
Keating and El-Osta 2015; Mcknight 2010; Wallace 2010; Wallace and Fan 2010), 
whereas its direct dynamic readout is embodied by the fluxome, defined as the 
ensemble of metabolic fluxes resulting from genes expressed and proteins translated 
including their posttranslational modifications (Aon 2013; Cascante and Marin 2008; 
Cortassa et al. 2015). The change in fluxome dynamics under different cellular func-
tions or in response to nutritional status such as caloric restriction (Mitchell et al. 
2016), starvation, or hypoxia has repercussions at both epigenetic and genetic levels 
thus retro-influencing metabolism. Mechanistically, the tricarboxylic acid cycle 
(TCA) metabolite citrate is important for acetyl-CoA (AcCoA) generation required 
for lipogenesis as well as for the acetylation of histones in nuclei (Salminen et al. 
2014; Wallace and Fan 2010). Epigenetic modifications via histone acetylation and 
cellular energy metabolism are linked by ATP citrate lyase (ACLY) in a glucose-
dependent manner (Wellen et al. 2009). In mitochondria, AcCoA is generated from 
pyruvate by PDH, and subsequently citrate synthase catalyzes the conversion of 
AcCoA and oxaloacetate into citrate in the TCA cycle. Citrate can be transported 
from mitochondria, via the citrate carrier, into cytoplasm, where ACLY generates 
AcCoA from citrate (Choudhary et al. 2014).

13.2  Mitochondrial Energy-Redox Functions

The interrelationship between mitochondrial energy and driving forces such as 
phosphorylation (ATP), electrochemical (ΔΨm, ΔpH), and redox (NAD(P)H, GSH, 
ROS) is able to quickly change in response to substrate and ADP levels. These ener-
getic changes determine intra- and extramitochondrial redox environments (RE) 
involving antioxidants level (e.g., glutathione peroxidase, peroxiredoxin), post-
translational modifications (glutathionylation, oxidation), and H2O2 emission, thus 
influencing the cytoplasmic redox status (Cortassa et  al. 2014; Dey et  al. 2016; 
Jones and Sies 2015; Kembro et al. 2013; Sies 2015; Swain et al. 2016). The ener-
getic status responds to fluctuations in ADP availability modulated by nutrients 
(e.g., substrate type, abundance) and energy demand (e.g., sedentarism, physical 
activity) and may, in turn, generate rhythmically changing levels of mitochondrial 
H2O2 emission (Cortassa et al. 2014) thereby conveying the energetic status to ROS 
signaling, both converging to tune mitochondrial and cellular function.

The oxidative potential of the TCA cycle, via NADH, influences both respiration 
and the provision of NAD(P)H, to restoring the antioxidant systems. As a matter of 
fact, the mitochondrial redox potential of thioredoxin2 (Trx2) decreases (becomes 
more reducing) from −322 mV at baseline to −350 mV in state 4 and state 3 respira-
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tion, during the transition from non-energized to energized (Stanley et al. 2011). 
This corresponds to a tenfold decrease in the ratio of oxidized to reduced Trx2 and 
a 2.4-fold increase in the percentage of the Trx2 pool in the reduced form. Under 
these conditions, after glutamate/malate addition, Trx(SH)2 rises in parallel with 
ΔΨm, and NAD(P)H, as well as GSH in the mitochondrial matrix (Stanley et al. 
2011). As another example, in isolated heart mitochondria, a lower respiratory flux 
is observed under oxidative stress than in its absence, at similar ΔΨm under both 
conditions (Cortassa et al. 2014). These results suggested that the NADH-electron 
donor capacity to respiration might diminish under stress likely due to redirection 
of electrons to the antioxidant systems. Indeed, the relationship between respiration 
and ROS is altered by oxidative stress, resulting in decreased mitochondrial ener-
getic performance and higher levels of ROS emission (Cortassa et al. 2014). The 
intramitochondrial RE is highly influenced by the type of substrate that in the case 
of lipids is in the form of reducing equivalents, e.g., NADH and FADH2.

As a dynamic metric, the RE is a function of the different redox couples account-
ing for both their redox potential and the concentration of the reduced species (Jones 
2002; Kembro et al. 2013; Schafer and Buettner 2001). Although specific for each 
subcellular compartment (Dey et  al. 2016; Jones and Go 2010; Kaludercic et  al. 
2014; Swain et al. 2016), the RE dynamics between compartments (e.g., mitochon-
dria, cytoplasm) is interdependent, mediated by exchange of ROS and redox-related 
components such as GSH and H2O2 (Dey et al. 2016; Jones and Go 2010; Kembro 
et al. 2014b). In the case of mitochondria, regeneration of glutathione (GSH) from its 
oxidized form (GSSG) requires glutathione reductase harnessing the more negative 
reduction potential of NADPH, which, in turn, will be regenerated by the transhy-
drogenase coupling hydride transfer between NADH and NADP to the proton motive 
force (Aon et  al. 2007; Hoek and Rydstrom 1988; Nickel et  al. 2015; Rydstrom 
2006). Since mitochondria cannot synthesize GSH, and the fact that GSSG cannot 
cross the membrane, the reduction of the latter strictly depends on compartmental-
ized mitochondrial NADPH generation, a crucial event in the ROS scavenging 
capacity by antioxidant systems (Aon et al. 2007; Dey et al. 2016; Swain et al. 2016).

The significant role of compartmentation in controlling ROS levels, the RE, 
and dynamic behavior also depends on the concerted and continuous function 
of the ROS scavenging systems, e.g., glutathione/thioredoxin, to keep low rates 
of H2O2 emission from mitochondria (Aon et  al. 2012; Stanley et  al. 2011). 
Therefore, the duplication of antioxidant defense systems in multiple compart-
ments appears as a natural and efficient salvage mechanism to avoid or to reduce 
oxidative bursts (Kembro et al. 2013, 2014b). Failure to maintain NAD(P)H sup-
ply during oxidative stress or increased work is a key contributor to ROS overload 
which may lead to reperfusion-related arrhythmias after ischemic injury (Akar 
et al. 2005; Aon et al. 2009; Brown et al. 2010; Swain et al. 2016; Xie et al. 2013) 
or heart failure, the latter due, in part, to impaired mitochondrial Ca2+ signaling to 
the TCA cycle (Liu et al. 2014).

Current wisdom suggests that under high energy demand, e.g., exercise, in the 
absence of additional oxidative stress, mitochondria will function at relatively more 
reduced RE (Aon et al. 2015; Hafstad et al. 2015). However, a shift will happen 
under pathological conditions, displacing mitochondrial function toward a more 
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oxidized RE (Alleman et  al. 2014, 2016; Aon et  al. 2014; Tocchetti et  al. 2012, 
2015). From this perspective, the TCA cycle function in response to nutrient avail-
ability can be viewed as a signaling task via its effects on NAD(P)H provision to the 
antioxidant systems and direct modulation of enzyme function via ROS, in addition 
to its well-known role as a source of metabolite precursors and NADH. For exam-
ple, alpha ketoglutarate dehydrogenase and PDH are both deactivated by H2O2 
(Crane et al. 1983; Mailloux 2015; Nulton-Persson et al. 2003) or influenced by the 
triggering of increased expression of antioxidant enzymes via the Nrf2 antioxidant 
response element (Nguyen et al. 2009).

13.3  Fatty Acids, Mitochondrial Function, and Oxidative 
Stress

FAs are main metabolic fuels, and β-oxidation represents their main degradation 
pathway, for example, in heart and skeletal muscle (Eaton 2002). FA beta-oxidation 
is a major pathway of energy metabolism providing ~80% of the ATP required for 
the liver and the heart (Eaton et al. 1996). The rate of β-oxidation is led by demand 
since an increase in work rate and ATP utilization leads to faster oxidative phos-
phorylation (OxPhos) and TCA cycle activity. In turn, the decrease in NADH and 
AcCoA levels leads to an increase in the β-oxidation flux (Eaton 2002; Eaton et al. 
1996; Lopaschuk et al. 2010; Neely et al. 1969; Oram et al. 1973).

The FAs released during triacylglyceride (TAG) catabolism are mainly used for 
β-oxidation and subsequent ATP synthesis via OxPhos in mitochondria. In oxidative 
tissues such as the heart, TAG-derived FAs are utilized as an energy source, but they 
also serve as signaling molecules as well as building blocks for membranes and 
complex lipids. Hepatocytes, heart and skeletal myocytes, adrenocortical cells, 
enterocytes, adipocytes, and macrophages may all contain large amounts of lipid 
droplets (LDs). Excessive LD accumulation is a hallmark of T2DM, obesity, athero-
sclerosis, hepatic steatosis, and other metabolic diseases (Aon et al. 2014; Singh and 
Cuervo 2012; Singh et al. 2009; Walther and Farese 2009; Walther and Farese 2012).

As a major energy source, FAs may provide up to two thirds of ATP synthesized 
via reducing equivalents derived from β-oxidation in mitochondria. The saturated 
FA palmitate (16:0) supplies about three times higher energy equivalents than glu-
cose in the form of reducing power [7 NADH, 7 FADH2 plus 8 AcCoA] with a net 
yield of 106 moles of ATP accounting for the energetic cost of activating the FA (-2 
ATP), whereas unsaturated FA oleate (18:1) supplies 8 NADH, 7 FADH2 plus 9 
AcCoA with a net ATP yield of 109 moles, in both cases assuming that OxPhos 
generates 1.5 ATP per FADH2 and 2.5 ATP per NADH oxidized (Nelson and Cox 
2013). The reducing equivalents are not only able to contribute electrons to the 
respiratory/energetic machinery but also to the antioxidant systems via mitochon-
drial transhydrogenase that converts NADH to NADPH, the latter being a major 
electron donor to the glutathione and thioredoxin systems from mitochondria (Hoek 
and Rydstrom 1988).
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Preservation of the intracellular RE is crucial for vital functions such as division, 
differentiation, contractile work, and survival, among others (Aggarwal and 
Makielski 2013; Aon et  al. 2007, 2009; Brown et  al. 2010; Fisher-Wellman and 
Neufer 2012; Jeong et al. 2012; Juhaszova et al. 2004; Lloyd et al. 2012; Muoio and 
Neufer 2012; Schafer and Buettner 2001). Mitochondria are main drivers of the 
intracellular RE (Alleman et  al. 2014; Aon et  al. 2015; Nickel et  al. 2014) and 
together with peroxisomes constitute the main subcellular compartments where 
lipid degradation occurs. ROS imbalance can be transduced into redox-mediated 
posttranslational modifications and signaling via H2O2, a mild oxidant reacting with 
cysteine residues in proteins, affecting, e.g., protein traffic, enzyme, and receptor 
transcription factor activity, throughout compartmentalized cellular redox circuits 
(D’autreaux and Toledano 2007; Gauthier et al. 2013; Jones and Go 2010; Kaludercic 
et al. 2014; Kembro et al. 2013). The ability of H2O2 to freely diffuse throughout 
cellular compartments enables propagation of intracellular physiological and patho-
physiological signals (Aon et al. 2004; Jeong et al. 2012; Juhaszova et al. 2004; 
Zhou et al. 2010).

A proper cellular/mitochondrial RE is also vital for optimal excitation- contraction 
(EC) coupling as well as energy supply in the heart (Burgoyne et al. 2012; Christians 
and Benjamin 2012). Mitochondrial lipid oxidation is a major determinant of the 
intracellular RE affecting, among other functions, Ca2+ handling by interfering with 
a wide range of proteins implicated in EC coupling (Fauconnier et al. 2007) includ-
ing the SR Ca2+ release channels [the ryanodine receptors], the SR Ca2+ pumps, and 
the sarcolemmal Na+/Ca2+ exchanger (Dedkova and Blatter 2008; Zima and Blatter 
2006). In this context, it becomes crucial to know about the impact of ROS on redox 
balance as a function of substrate oxidation.

The local balance between the ROS-generating and ROS-scavenging capacities 
in the dense and highly connected mitochondrial network of cardiac cells determines 
mitochondrion behavior. For instance, mitochondria oscillate when a threshold of 
ROS is attained, and their collective behavior is tuned via phase and frequency syn-
chronization (Kurz et al. 2010). In turn, the synchronization process is influenced by 
the size of mitochondrial clusters: large clusters take longer to synchronize result-
ing in a lower common frequency compared to smaller clusters (Kurz et al. 2016). 
Importantly, mitochondrial cluster dynamics in cardiomyocytes can be altered by 
metabolic substrates (glucose, pyruvate, lactate, β-hydroxybutyrate) influencing the 
synchronization of mitochondrial dynamics, producing a larger frequency distribu-
tion and an inverse relation between cluster frequency and size implying a dynamic 
heterogeneity and functional fragmentation of the mitochondrial population into 
several localized, smaller clusters (Kurz et al. 2010, 2014, 2015, 2016).

In agreement with the prominent role of lipids on the intracellular redox status, 
it was shown that with palmitate as a fuel source, a transition from oxidized to 
reduced cellular redox status in cardiomyocytes from type 2 diabetic (db/db) hearts 
was determined, drastically abating ROS levels (Tocchetti et al. 2012). This effect 
was coupled to a marked GSH rise both in wild-type and db/db myocytes from 
mice. As a consequence of its favorable effect on cellular redox balance, Palm sig-
nificantly improved ISO-induced contractile reserve in db/db, type 2 (Tocchetti 
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et al. 2015) and type 1 (Tocchetti et al. 2015) diabetic cardiomyocytes, from mice 
and guinea pig, respectively, and heart trabeculae from Zucker diabetic fatty rat, 
type 2 diabetes animal model (Bhatt et al. 2015).

Beyond mitochondria, lipids exert a considerable impact on other cellular pro-
cesses, influencing the functional status of several organs such as the liver, skel-
etal, and cardiac muscles (Lee et  al. 2015; Muoio and Neufer 2012; Roul and 
Recchia 2015; Singh and Cuervo 2012; Sung et al. 2015). The impact of lipids on 
mitochondrial redox status and ROS emission, and their links to energetics, is not 
fully elucidated. At a most basic level, our knowledge remains quite incomplete 
about the action of lipids on mitochondrial energetic and redox functions. Lipids 
can act both as uncouplers and OxPhos inhibitors (Wojtczak and Schonfeld 1993), 
and the consequences of these counteracting effects on mitochondrial energetic, 
redox, and signaling functions are just starting to be unraveled (Aon et al. 2014; 
Kienesberger et  al. 2013; Schonfeld and Wojtczak 2008). Recent data indicate 
that there is a concentration effect of lipids on the redox and energetic response 
of mitochondria; under the threshold concentration lipids can have beneficial 
actions as opposed to deleterious ones depending on the threshold levels achieved 
(Cortassa, Sollott, Aon, unpublished).

13.4  Glucose Metabolism, Pyruvate Transport, and Pyruvate 
Dehydrogenase Complex Regulation

Cytoplasmic pyruvate is derived from multiple sources in the cytosol, namely, gly-
colysis, and precursors lactate and alanine. Pyruvate diffuses freely across the outer 
mitochondrial membrane through nonselective pores but, like other charged mole-
cules, requires specialized transport across the inner membrane. The mitochondrial 
pyruvate carrier (MPC) conducts pyruvate across the inner mitochondrial mem-
brane to the matrix and thereby occupies a critical link between cytosolic and mito-
chondrial metabolisms. The mammalian MPC protein complex comprises two 
obligate, paralogous subunits, designated MPC1 and MPC2, which are encoded by 
the MPC1 and MPC2 genes and highly conserved across eukaryotes (Bricker et al. 
2012). In liver mitochondria, besides the TCA cycle, pyruvate can be channeled 
toward gluconeogenesis by carboxylation to oxaloacetate by the enzyme pyruvate 
carboxylase. This reaction regulates oxaloacetate supply to phosphoenolpyruvate 
kinase and, therefore, the overall gluconeogenic rate (Gray et al. 2015). In type 2 
diabetes, elevated hepatic β-oxidation drives gluconeogenesis by raising mitochon-
drial levels of reducing equivalents and AcCoA which allosterically activates pyru-
vate carboxylase.

Metabolic flexibility denotes the capacity of a system to adjust fuel selection, 
primarily glucose and FAs, depending on nutrient availability (Kelley and Mandarino 
2000; Zhang et al. 2014). Immediately downstream the MPC, sitting at the cross-
road – utilization pathways of glucose-linked substrates (as sources of oxidative 
energy or as precursors of lipogenesis), or FAs (as preferred substrates for supplying 
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AcCoA and NADH) – the PDH complex plays a critical role in the use of either 
carbohydrate or fat as fuel. In animals, the PDH complex together with Mg2+, thia-
min pyrophosphate, CoA, and NAD+ catalyzes the oxidative decarboxylation of 
pyruvate into AcCoA, CO2, and NADH, by an operationally nonreversible reaction 
(forward rate constant ~107 times higher than in the reverse direction, at pH 7) 
(Randle 1986). The PDH reaction has a role in ATP synthesis and in the biosynthe-
sis of FAs and TCA cycle intermediates from glucose.

Regulation of the mammalian PDH complex proceeds via specific kinases (pyru-
vate dehydrogenase kinase, PDK) and phosphatases (pyruvate dehydrogenase phos-
phatase, PDP) that render the enzymatic complex phosphorylated (inactive) or 
dephosphorylated (active) (Fig.  13.1) (see Mailloux 2015; Roche et  al. 2001 for 
reviews). The E1 component of the PDH complex is interconverted between active 
and inactive forms, resulting in activity proportional to the fraction of E1 tetramers 
that are not phosphorylated.

The crucial role of PDH manifests differently depending upon the physiological 
condition or the body organ where tissue-selective control of this reaction is indi-
cated by the distinct patterns of kinase isoform expression and the highly con-
served primary structures of the different PDK isoforms (Holness et  al. 2000; 

Fig. 13.1 Scheme of the model used to test the influence of PDH regulation on mitochondrial 
substrate selection. The model encompasses (i) the uptake of pyruvate via the pyruvate carrier and 
its initial oxidation by pyruvate dehydrogenase (PDH) and the TCA cycle; (ii) the uptake of 
palmitoyl- CoA (PCoA) into mitochondria followed by its oxidation via β-oxidation, based on the 
model of van Eunen and collaborators (Van Eunen et al. 2013); Acetyl-CoA (AcCoA) is at the 
branching point in which glucose and fatty acids degradation come together before entering the 
TCA cycle for complete oxidation. The model also includes (iii) oxidative phosphorylation, (iv) 
ionic transport for H+, Ca2+, and inorganic phosphate, (v) ATP/ADP exchange through the adenine 
nucleotide translocator, and (vi) the generation and scavenging of ROS as described in Kembro 
et al. (2013). Pyruvate dehydrogenase (PDH) complex regulation accounts for pyruvate dehydro-
genase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) modulation by all known 
effectors, as modeled by the factor αPDH described in the text (see Eqs. 13.1 and 13.2). The right 
box depicts the effectors (positive indicated with arrow heads, negative by blunt lines) and their 
targets PDK and PDP
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Roche et al. 2001; Roche and Hiromasa 2007). For example, among the four PDK 
isoforms, PDK2 is apparently the most widely distributed in various body tissues, 
namely, at high levels in heart, brain, liver, skeletal muscle, kidney, adipose tissue 
(brown and white), and lactating mammary gland, and at lower levels in lung and 
spleen (Bowker-Kinley et al. 1998; Wu et al. 1998, 2000).

Cardiac muscle preferentially uses FAs or ketone bodies but can rapidly upregu-
late glucose utilization by activating PDH during a rapid transition to exercise or 
postprandial elevation of blood glucose. Resting skeletal muscle has a lower propor-
tion of PDH in the active form than the heart, but this enzymatic complex can be 
rapidly reactivated upon dephosphorylation during initiation of exercise, or its 
activity down-modulated as in sustained exercise, when the use of FAs increases 
(Egan and Zierath 2013, Roche et al. 2001). Within skeletal muscle, PDH regulation 
differs in slow- and fast-twitch muscles (Holness et al. 2000; Holness and Sugden 
1990; Sugden et al. 1997, 2000), the latter exhibiting a greater reliance on glucose 
thus maintaining a greater portion of PDH in the active form. In slow-twitch muscle, 
the enhanced FA oxidation after feeding high-fat diets is mainly attributed to the 
upregulation of pyruvate dehydrogenase kinase 4, PDK4 (Zhang et al. 2014). During 
starvation, the need to protect glucose stores can be fulfilled by the overexpression 
of one or more PDK kinase isoforms as in liver (Denyer et al. 1986; Jones et al. 
1992; Marchington et al. 1987; Sugden et al. 1996, 1998), kidney (Sugden et al. 
1999), and lactating mammary gland (Baxter and Coore 1978) resulting in a shut-
down or acute reduction of PDH activity in these tissues (Roche et al. 2001). In the 
liver, PDH activity is down-modulated immediately after feeding, even following a 
rise in insulin levels, until liver glycogen is replenished (Holness et al. 1988; Sugden 
et al. 1998). In fed animals, PDH activity in liver increases in response to the avail-
ability of mobile forms of glucose-linked substrates (e.g., glucose, alanine) rather 
than insulin-enhancing pyruvate dehydrogenase phosphatase (PDP) activity, lead-
ing to FA synthesis. In the brain, the PDH reaction plays a crucial role in the com-
plete oxidation of glucose (Malloch et al. 1986).

13.4.1  General Effector Regulation of PDK and PDP Activities 
That Modulate Mammalian PDH

The PDH complex is negatively regulated allosterically by the enzymatic products 
AcCoA and NADH and activated by NAD+, ADP, and CoA (Fig. 13.1). These allo-
steric effectors modulate the kinase PDK and phosphatase PDP.  The dedicated 
PDK/PDP system responds to metabolite and hormone signals to vary PDH activity 
in response to changes in nutritional state (Roche and Hiromasa 2007).

Among the PDK isoforms, only PDK2 exhibits strong sensitivity for all regula-
tory responses shown for PDK. PDK2 activity is greatly stimulated by NADH and 
AcCoA (Bao et  al. 2004a, b), the products resulting from the PDH reaction and 
β-oxidation. Thus, elevation of PDK2 activity plays an important role in suppressing 
PDH activity to favor use of fat over carbohydrate as an oxidative fuel. ADP and 
pyruvate act synergistically to decrease PDK2 activity (Bao et al. 2004b).
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PDP activity requires Mg2+ and effectors such as Ca2+, to decrease the Km of 
one or more PDP isoforms for Mg2+, and polyamines, an insulin second messenger 
(Roche et al. 2001). Ca2+ acts to directly upregulate the portion of active PDH by 
enhancing PDP1 activity up to tenfold (Denton et al. 1996; Thomas and Denton 
1986; Yan et al. 1996). The possible regulatory role of Mg2+ is suggested by the 
sensitivity of the activation constant of PDP1 to Ca2+ depending on Mg2+ levels 
(~0.8 μM Ca2+ in the presence of saturating Mg2+, increasing to 2 μM at 1.0 mM 
Mg2+) (Roche et al. 2001). The PDP isoform activities are regulated by effector- 
altered sensitivities to Mg2+ level through very different mechanisms. With PDP1, 
its regulatory subunit plays a key role in modulating PDP1 catalytic site in response 
to Mg2+ level. PDP1 activity has been shown to occur in a wide range of tissues 
including the heart, skeletal muscle, kidney, brain, and liver. PDP2 was elevated 
in liver and adipose tissue suggesting its importance in fat-synthesizing tissues 
(Huang et al. 1998). PDP2 is probably the target for insulin activation of PDH in 
adipose tissue.

Hormonal signaling cascades such as the insulin signaling pathway also play a 
part in modulating PDH activity in response to whole-body changes in nutrition and 
energy state. Insulin enhances PDH activity in fat-synthesizing tissues by producing 
a second messenger that enhances PDP activity by lowering the Km of a phospha-
tase for Mg2+ (Denton et al. 1986; Thomas et al. 1986). Hormonal signals can also 
alter the short-term control of PDH activity by altering kinase activity. Signals that 
increase the production of pyruvate from glucose (e.g., adrenalin in skeletal muscle) 
will enhance pyruvate inhibition of PDK activity (Randle 1998; Sugden and Holness 
1994). Hormone signals that enhance triglyceride breakdown and therefore FA oxi-
dation indirectly stimulate kinase activity due to the resulting elevation of the intra-
mitochondrial levels of NADH and AcCoA (Randle 1998; Roche et al. 2001; Roche 
and Hiromasa 2007; Sugden and Holness 1994).

13.5  Computational Modeling of Mammalian PDH

13.5.1  Background

The critical role of PDH in redirecting catabolism toward the utilization of glucose 
or FAs is driven by the negative feedback of its own reaction products, AcCoA and 
NADH (also supplied by FAs, ketone bodies, and the degradation of several amino 
acids), and can enhance kinase activity up to fourfold (Cate and Roche 1978; Pettit 
et al. 1975). Figure 13.1 displays a scheme with the strategic location of PDH in the 
metabolic network, highlighting its dependence on multiple regulatory effectors 
from mitochondria.

Decreased PDH activity restricts carbohydrate consumption as a result of the 
increase in mitochondrial NADH/NAD+ and AcCoA/CoA ratios that stimulate PDH 
inactivation (Batenburg and Olson 1976; Hansford 1976). Stimulation of responsive 
PDK isoforms is produced by the use of these reactants to increase the proportion 
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of reduced and acetylated lipoyl groups within the complex (Ravindran et al. 1996; 
Yang et al. 1998).

AcCoA inhibits PDH, potentially competing with CoA (Ki = 5–10 μM) (Quinlan 
et al. 2014). Reduced availability of AcCoA decreases malonyl-CoA, an inhibitor of 
lipid utilization, thus forcing β-oxidation which is facilitated by upregulation of 
PDK4 (Foster 2012; Sugden et al. 2000; Zhang et al. 2014). In isolated mitochon-
dria, AcCoA can be removed by at least two mechanisms: the condensation of oxa-
loacetate with AcCoA to generate citrate through citrate synthase and, upon addition 
of carnitine, the conversion of AcCoA to acetylcarnitine, catalyzed by carnitine 
acetyltransferase. Removal of AcCoA by either pathway should promote flux 
through the PDH complex.

The effects of NADH/NAD+ and AcCoA/CoA are mediated by the oxidation, 
reduction, and acetylation state of the lipoyl group, an 80-amino acid, free-folding 
domain in the N-terminal region of E2 (Roche et al. 2001). Elevation of the NADH/
NAD+ and AcCoA/CoA ratios facilitates the stimulation of the activity of certain 
kinase isoforms, including PDK2, through covalent changes in the E2 component. 
PDK2 binds to the lipoyl domain depending on the redox and acetylation status of 
the latter, determining the enzymatic activity (Roche and Hiromasa 2007; Steussy 
et al. 2001). The regulatory response of PDK2 is also positively dependent on K+ 
ions in the presence of physiologic levels of chloride and phosphate anions. It seems 
likely that, mechanistically, this product stimulation of PDK2 activity results from 
speeding up the rate of dissociation of ADP, which is reduced in the presence of 
elevated ions (Bao et al. 2004a, b). Potent synergistic inhibition of PDK2 activity by 
elevated ADP and pyruvate requires both K+ and Pi. The marked reduction in bind-
ing of PDK2 to the L2 domain of E2 due to binding of ADP and pyruvate (aided by 
K+ and phosphate) likely makes a major contribution (beyond slowing ADP disso-
ciation) to the potent inhibition by these effectors (Roche and Hiromasa 2007).

13.5.2  Modular Analysis of PDH Activity and Its Regulation

Our model of PDH accounts for the regulatory influence of multiple effectors on its 
activity through αPDH, a comprehensive integrative factor that accounts for all well- 
known regulators targeting either PDK or PDP, including ATP, ADP, Ca2+, pyruvate 
in addition to AcCoA, CoA, NADH, and NAD (Fig. 13.1):
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The symbols used in Eqs. (13.1 and 13.2) are defined in Table 13.1.
The main modulators of the interconversion between the non-phosphorylated 

and phosphorylated forms of PDH are AcCoA/CoA and NADH/NAD molar ratios. 
An increase in either ratio augments the proportion of inactive PDH since the activ-
ity of the kinase PDK is stimulated by both AcCoA and NADH while it is inhibited 
by CoA and NAD. NADH renders PDH more inactive via inhibition of the phospha-
tase PDP, which is reversed by NAD (Pettit et al. 1975).

The 3D plots in Figs.  13.2 and 13.3 show the dependence of PDH activity 
(Figs. 13.2a and 13.3a) and the factor αPDH (Figs. 13.2b and 13.3b) as a function 
of its substrate pyruvate or Ca2+ and both AcCoA/CoA and NADH/NAD ratios, 
respectively. PDH activity increases exponentially at low AcCoA/CoA ratio con-
comitantly with the sensitivity to pyruvate. From the behavior of αPDH (Fig. 13.2b), 
it can be seen that the modulatory role of AcCoA/CoA appears to dominate the 
enzyme activity at low rather than high ratios, since at high AcCoA/CoA the activ-
ity of PDH is negligible, whereas αPDH, although low, is not, suggesting that other 
effectors may prevail. Comparatively, the degree of enzyme activation attained by 
NADH/NAD and Ca2+ is about fivefold lower than AcCoA/CoA and pyruvate (com-
pare Figs. 13.2a and 13.3a).

The PDH model was able to simulate the experimental data of Pettit and col-
leagues (Pettit et al. 1975) obtained in highly purified preparations of PDH com-
plexes and their component enzymes from bovine kidney and heart. The steady-state 
activity of PDH was modulated throughout a wide range of AcCoA/CoA (Fig. 13.4a) 
and NADH/NAD (Fig. 13.4b) ratios, both experimentally and computationally. The 
model correctly predicts a decrease in activity as a function of an increase in the 
ratios, with is only a minor impact at substantially low ratios (<0.1) (Fig. 13.4a, b, 
insets).

13.5.3  Integrated Analysis of PDH Activity and Regulation

Next, we analyzed the PDH behavior in an integrated model of mitochondrial 
metabolism (Cortassa, Sollott, Aon, unpublished) including simultaneous degrada-
tion of glucose-derived substrates (pyruvate, Pyr) and FAs (palmitoyl-CoA, PCoA) 
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(Fig. 13.1). We sought to understand the impact of substrate selection (glucose-FA) 
on the regulation of PDH activity via AcCoA/CoA and NADH/NAD ratios, when 
the enzyme is integrated to mitochondrial metabolism. Figure 13.5 depicts the PDH 
flux as a function of both ratios, when either glucose (via pyruvate) is changing at 
constant FA input (via PCoA) or vice versa. Overall, and as expected from the 
behavior of isolated PDH, its flux decreases as a function of increasing AcCoA/
CoA (compare Figs. 13.4a and 13.5a). However, PDH flux as a function of NADH/
NAD displays a different behavior than its activity when isolated, i.e., increasing 
rather than decreasing as a function of the ratio (compare Figs. 13.4b and 13.5b). 
When integrated, the PDH flux is the result of the instantaneous composition of all 
regulatory effectors. This interpretation was confirmed by the model’s ability to 
reproduce the trajectory of PDH flux in the integrated system, across the family of 
PDH activity curves corresponding to the isolated enzyme (Fig.  13.6), which is 
obtained when using the steady-state values of all regulatory effectors to parameter-
ize the PDH rate expression (e.g., see Eqs. 13.1 and 13.2). When PCoA is changing 

Table 13.1 Parameters used in pyruvate dehydrogenase modeling

Symbol Value Units Description

VPDH
max 7.5 mM s−1 Maximal rate of pyruvate dehydrogenase (PDH)

αPDH var – Factor integrating PDH effectors through 
regulation of PDK and PDP

K PDH
NAD
M_

0.05 mM Michaelis constant (KM) of PDH for NAD

K PDH
Pyr
M_

0.1 mM KM of PDH for pyruvate

K PDH
CoA
M_

0.006 mM KM of PDH for coenzyme A (CoA)

K PDH
CoA
D_

0.03 mM Dissociation constant for CoA

K PDH
NAD
D_

0.04 mM Dissociation constant for NAD

CoAT 1.0 mM Total concentration of mitochondrial CoA species
NADT 1.0 mM Total concentration of mitochondrial NAD

KDP
Ca 0.001 mM Activation constant of PDP for Ca2+

KPDK
ATP 0.2 mM Activation constant of PDK for ATP

KPDK
ADP 0.05 mM Inhibition constant of PDK for ADP

KPDK
Pyr 0.1 mM Inhibition constant of PDK for pyruvate

FDP_NAD 6.7 – NADH inhibitory factor of PDP
FPDK_AcCoA 5.3 – AcCoA activation factor of PDK
n_NAD 0.2 – Exponential coefficient of NADH/NAD ratio
n_CoA 0.6 – Exponential coefficient of AcCoA/CoA ratio
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Fig. 13.2 Modular analysis of PDH activity and its modulatory factor αPDH as a function of pyru-
vate and AcCoA/CoA ratio. The PDH rate expression (Eq.  13.1) was studied as a function of 
pyruvate concentration in the range 0.01–2.5 mM, while CoA was varied between 5 × 10−4 and 
0.05  mM while keeping AcCoA constant at 0.2  mM.  Other parameters were as follows: 
NADH = 0.1 mM; NAD+ = 0.9 mM; ATP = 1.0 mM; ADP = 0.5 mM; Ca2+ = 0.2 μM. Maximal rate 
and other parameters utilized are indicated in Table 13.1

Fig. 13.3 Modular analysis of PDH activity and its modulatory factor αPDH as a function of Ca2+ 
and NADH/NAD ratio. The PDH rate expression (Eq. 13.1) was analyzed as a function of Ca2+ 
(range 1 × 10−5–1.5 × 10−3 mM) and NADH (range 0.01–0.8 mM) concentrations, while NAD+ was 
kept constant at 0.9 mM. Other parameters were as follows: AcCoA = 0.2 mM; CoA = 0.01 mM; 
ATP = 1.0 mM; ADP = 0.5 mM; Pyr = 0.5 mM. Maximal rate and other parameters utilized are 
indicated in Table 13.1

at constant Pyr, we observe an overall similar qualitative behavior although for a 
more restricted range of variation in both ratios and activity (Fig. 13.5). Together, 
these results suggest that AcCoA/CoA regulation prevails over NADH/NAD in the 
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Fig. 13.5 Steady-state PDH flux in the integrated model when either pyruvate (Pyr) or palmitoyl- 
CoA (PCoA) was varied (PCoA/Pyr ratio). A computed simulation of the complete model was run 
until all state variables reached steady state (i.e., their time derivatives were <1 × 10−10). Pyr was 
adjusted in the range from 4 × 10−3 to 0.01 mM (indicated in blue lines) while keeping PCoA con-
stant at 0.04 mM. In the steady states indicated with a red line PCoA was varied from 0.01 to 
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NAD ratios are computed from their steady-state values occurring upon variations in the relative 
proportion of substrates Pyr and PCoA. Consequently, all axes are representing state variables thus 
explaining the trend observed in the PDH flux value as a function of NADH/NAD, since the values 
of every regulatory effector of PDH activity are simultaneously changing in these simulations
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integrated system, where the flux through the PDH complex as a systemic property 
results from the instantaneous levels of all regulatory effectors.

Respiration and H2O2 emission both increase as a function of PCoA/Pyr 
ratio when either one of them is changing in constant proportion to the other, 
suggesting that ROS generation is matched by the ROS scavenging systems 
under these conditions (Fig. 13.7).

To address the question of substrate selection, we quantified the fluxes driven by 
Pyr or PCoA as a function of their ratio to simulate changing nutrient availability 
and the sensitivity of the pathways’ flux to both substrates. Figure 13.8a shows the 
fluxes through β-oxidation via carnitine palmitoyl transferase 1 (CPT1) and PDH as 
a function of the ratio PCoA/Pyr. When Pyr increases at constant PCoA, i.e., 
decreasing PCoA/Pyr ratio, the flux through PDH increases 3.6-fold, whereas that 
of CPT1 decreased 15%. On the other hand, increasing PCoA at constant Pyr pro-
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Fig. 13.6 Modular study of the PDH activity under conditions reproducing the steady states 
obtained with different PCoA/Pyr ratios. The concentrations of substrates and effectors other than 
the ones in the x-axis were fixed at the values corresponding to the steady states represented in the 
curves in Fig. 13.5. The PDH activity was calculated as a function of the ratio AcCoA/CoA and 
NADH/NAD under conditions mimicking variations in Pyr (top panels) or PCoA (bottom panels). 
The squares indicate the exact conditions for all substrates and effectors that were represented in 
Fig. 13.5
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duced ~40% increase in flux through CPT1 as compared to ~11% decrease through 
PDH. Together, these results suggest that the flux from Pyr is much more sensitive 
to nutrient availability than from PCoA, thus making substrate selection toward Pyr 
more sensitive, at least under these conditions (Fig. 13.8b). Quantitatively speaking, 
the flux values through PDH and CPT1 determined with our model agree very well 
with published results, respectively, of glucose oxidation in whole heart (3–10 vs. 
5–7 μM s−1) (Buchanan et al. 2005; Cortassa et al. 2015; Kashiwaya et al. 1994) and 
with palmitate oxidation in cardiomyocytes (0.4–0.6 vs. 0.4 μM s−1) (Luiken et al. 
2009) or respiration in the presence of both palmitate and glucose in cardiomyo-
cytes (0.12 vs. 0.4 μM s−1) (Wang et al. 2011).

Taken together, the results obtained agree with the idea that the crucial regu-
latory role played by PDH in substrate selection in the short term depends on 
glucose and FAs’ availability and on the resulting composition of metabolite 
levels that activate or inhibit the kinases and phosphatases from the PDH com-
plex. Within this complex regulatory picture, our simulations also indicate that, 
under these conditions, the phosphorylated form of PDH predominates over the 
non-phosphorylated one, as can be judged by the low αPDH values (~1.2 × 10−3, 
when either pyruvate or PCoA is varying; see also Figs. 13.2, 13.4, and 13.5). 
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is a graphical representation of the sensitivity of flux regulation through the PDH complex and 
CPT1 in response to changing proportion of glucose- and FA-derived substrates

Accordingly, a higher response of pyruvate flux through PDH as compared to 
FAs through CPT1 was determined, indicating a higher sensitivity of selection 
toward carbohydrates (Fig. 13.8). Judging from the agreement between the PDH 
behaviors whether isolated from or integrated with mitochondrial metabolism, 
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simulations also show a predominant regulatory impact by the AcCoA/CoA ratio 
as compared to NADH/NAD (compare Figs. 13.4 and 13.5).

13.6  Modulation of Substrate Selection and Metabolic 
Remodeling in Health, Disease, and Aging

(Patho)physiological situations involve differential selection of substrate fuel which 
can exert a significant impact on the organism or cell behavior. For instance, obese 
and type 2 diabetic patients exhibit greater rates of FA oxidation and insulin resis-
tance unlike lean healthy individuals (the latter whom, under insulin stimulation, 
are able to switch from predominantly FA oxidation to elevation of glucose uptake, 
oxidation, and storage). This capacity to adjust fuel selection as a function of nutri-
ent availability has been termed metabolic flexibility (Kelley and Mandarino 2000), 
in which the mitochondrial PDH complex plays a crucial regulatory role (Randle 
1986; Roche et al. 2001; Roche and Hiromasa 2007; Sugden et al. 1998; Zhang 
et al. 2014). PDH regulation involves short-term (e.g., allosteric inhibition/activa-
tion) as well as long-term (e.g., gene expression, transcriptional, posttranslational) 
mechanisms (Randle 1998; Roche et al. 2001; Roche and Hiromasa 2007; Sugden 
et al. 1997, 1998) which, in turn, are subjected to circadian regulation (Bellet and 
Sassone-Corsi 2010). The temporal regulatory dimension of PDH activity is of 
great importance because both acute (e.g., fast-feed transition) and chronic (e.g., 
metabolic disorder) nutritional conditions demand flexible, or generate inflexible, 
metabolic responses. For example, long-term consumption of a high-saturated fat 
diet may cause hyperglycemia, hyperinsulinemia, glucose intolerance, and obesity. 
In skeletal muscle, consumption of a high-fat diet leads to the use of lipid-derived 
fuels as respiratory substrates, a switch modulated, in part, by upregulation of PDK, 
the kinase activity associated with PDH (Zhang et al. 2014). Another level of regula-
tion is given by nutrient availability-sensitive posttranslational modifications in the 
presence or absence of sirtuin3 (SIRT3) that reshape the mitochondrial acetylome, 
potentially affecting multiple enzymatic activities (Finkel 2015; Foster et al. 2013).

Glucose stores are important for their utilization as preferred substrate by the 
central nervous system. Inactivation of PDH along with greatly diminished glucose 
oxidation may happen in muscle, liver, and fat cells due to diabetes, starvation, 
long-term feeding of high-fat diet, or obesity. As the studies of Randle and cowork-
ers first demonstrated (Randle 1986; Randle et al. 1963), during starvation and the 
diabetic state, the acute decreases in the PDH activity of these tissues are engen-
dered by a marked induction of kinase activity (Randle 1998; Roche et al. 2001). In 
starvation and hibernation, enhanced PDK activity is beneficial for preventing loss 
of body carbohydrate while favoring the use of the more abundant lipid fuels. Along 
with increased kinase levels, hormonally controlled increase in FA and ketone body 
oxidation elevates AcCoA and NADH, which, in turn, stimulate the activity of cer-
tain PDK isoforms.
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Severe limitation of glucose use by PDH inactivation raises blood glucose in the 
diabetic state, while glucose clearance is impaired making a major contribution to 
the pathology of diabetes. High blood glucose damages vascular cells (Brownlee 
2001; Choi et al. 2008; Giacco and Brownlee 2010; Laakso 1999; Lasker 1993) and 
the myocardium leading to progressive vascular damage and heart dysfunction in 
both type 1 (insulin-deficient) and type 2 (insulin-resistant) diabetes (Aon et  al. 
2015; Bhatt et al. 2015; Tocchetti et al. 2012, 2015), which amount to ~4% and 
96%, respectively, of the diabetic population according to the 2012 American 
Diabetes Association statistics. Diabetes is characterized by increased circulating 
concentrations of glucose and FAs. Irrespective of hyperglycemia, the heart from 
diabetics relies heavily on FA utilization with a concomitant decrease in glucose 
oxidation (Boudina and Abel 2010; Carley and Severson 2005). Historically, the 
glucose-FA cycle, also known as the Randle cycle (Randle 1998; Randle et  al. 
1963), has played a relevant role as the biochemical mechanism explaining the con-
trol and functional impact of fuel selection, FA over glucose oxidation (Hue and 
Taegtmeyer 2009). However, on its own, hyperglycemia induces cellular damage 
that involves the increase of the flux of glucose and other sugars through the polyol, 
hexosamine, advanced glycation end products (AGEs), and diacylglycerol (DAG) 
pathways, the latter leading to protein kinase C (PKC) activation (Brownlee 1995, 
2001; Giacco and Brownlee 2010). These changes are also implicated in the 
hyperglycemia- mediated modifications and impairments of cell redox assets (Aon 
et al. 2015; Brownlee 2001; Tocchetti et al. 2012, 2015; Williamson et al. 1993).

Under starvation and diabetic conditions, the PDK4 isoform (less sensitive to 
pyruvate inhibition vs. other isoforms) is overexpressed in several tissues, particu-
larly in heart and skeletal muscle under conditions of limited consumption of carbo-
hydrate (Holness et al. 2000; Roche et al. 2001; Sugden et al. 1998, 1999, 2000; Wu 
et  al. 1998, 2000). Besides prolonged starvation, feeding a high-fat, low- 
carbohydrate, diet increases PDK4 in both slow- and fast-twitch muscles. Refeeding 
or insulin treatment reverses the effects of starvation or diabetes, respectively. In rat 
liver, PDK2 and PDK4 are both overexpressed under conditions of starvation, dia-
betes, or feeding a high-fat, low-carbohydrate diet or in response to artificial eleva-
tion of cAMP or 3,5,3′-triiodothyronine (Denyer et  al. 1986; Jones et  al. 1992; 
Sugden et al. 1998; Sugden and Holness 1994; Wu et al. 2000). These effects can be 
also reversed by insulin or refeeding with a carbohydrate-rich diet (Holness et al. 
1988). Selective elevation of PDK2, following maintenance on a high-fat diet, could 
be prevented or reversed by a diet supplemented with long-chain ω-3-fatty acids 
(Sugden et al. 1998).

A healthy heart can utilize various substrates (glucose, FAs, ketones, lactate) to 
satisfy its continuous energy requirements, although under postabsorptive or fasting 
conditions it preferentially uses FAs (Kolwicz and Tian 2009; Lionetti et al. 2011). 
The heart’s high adaptability can also be found throughout its life cycle where at the 
fetal stage it relies on carbohydrate substrates, whereas at more mature stages it 
predominantly consumes FAs as fuel. The FA dependence of the heart can be 
enhanced by diabetes (Belke et al. 1999; Lopaschuk 2002). In general, aging and 
disease drive substantial metabolic remodeling that includes changes in mitochon-
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drial function, impaired metabolic flexibility, and reduced insulin sensitivity (Finkel 
2015). In the aged heart, the capacity for glucose utilization prevails over FA oxida-
tion (Hansford 1983; Lesnefsky et al. 2016; Van Bilsen et al. 2009), although tend-
ing to be insufficient for sustaining energy supply under stress (Kolwicz and Tian 
2009). Unlike the reported decline of protein levels from mitochondrial metabolism 
(including respiratory complexes, TCA cycle, FA, and amino acid metabolisms), a 
significant increase in glycolytic and extracellular structural proteins happens with 
age (Tocchi et al. 2015). Aging impairs mitochondrial OxPhos, particularly so in 
interfibrillar mitochondria, affecting the activity of complexes III and IV, which 
accounts in large measure for the known decrease in respiration (Lesnefsky et al. 
2016). Phenotypically, the metabolic profile of the aging heart bears some similarity 
to that of heart failure. Pathological hypertrophy is associated with reversion to a 
fetal gene expression pattern and an increased reliance on carbohydrate fuel rather 
than FAs which in turn are less consumed (Kolwicz and Tian 2009).

13.7  Concluding Remarks

Mitochondrial metabolism and PDH activity are central players in substrate selec-
tion, a process that underlies metabolic remodeling and flexibility in healthy, dis-
eased, and aged states. Within the complex regulatory picture of the PDH activity, 
with dedicated kinases and phosphatases as key targets, the mitochondrial AcCoA/
CoA ratio assumes a predominant role compared to NADH/NAD. Under conditions 
of different nutrient availability, the higher sensitivity of PDH toward glucose- 
derived substrates (i.e., pyruvate) is in agreement with the crucial role played by this 
enzymatic complex in preserving glucose stores for brain function that, in turn, 
determines the overall balance between nutrient utilization, storage, and turnover in 
the organism’s function. By accounting for all major effectors of the PDH complex, 
modeling and results presented herein now enable a more realistic and detailed 
understanding of the regulation of selection between glucose- and FA-derived sub-
strates in the presence of all major redox-energetic mitochondrial functions.
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